【題目】九年級三班學(xué)生蘇琪為幫助同桌萬宇鞏固平面直角坐標(biāo)系四個象限內(nèi)及坐標(biāo)軸上的點的坐標(biāo)特點這一基礎(chǔ)知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,02三個數(shù)字,背面向上洗勻后隨機(jī)抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機(jī)取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標(biāo)系中找出點Ma,b)的位置.

1)請你用樹狀圖幫萬宇同學(xué)進(jìn)行分析,并寫出點M所有可能的坐標(biāo);

2)求點M在第二象限的概率;

3)張老師在萬宇同學(xué)所畫的平面直角坐標(biāo)系中,畫了一個半徑為3⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

【答案】1)(﹣3,0)(﹣3,2)(0﹣3)(0,2)(2,﹣3)(2,0);(2;(34

【解析】

試題(1)畫樹狀圖展示所有6種等可能的結(jié)果數(shù);(2)根據(jù)第二象限點的坐標(biāo)特征找出點M在第二象限的結(jié)果數(shù),然后根據(jù)概率公式求解;(3)畫出圖形得到在⊙O上的有2個點,在⊙O外的有2個點,在⊙O內(nèi)的有2個點,則利用切線的定義可得過⊙O上的有2個點分別畫一條切線,過⊙O外的有2個點分別畫2條切線,但其中有2組切線重合,于是可判斷過點M能作4⊙O的切線.

試題解析:(1)畫樹狀圖為

共有6種等可能的結(jié)果數(shù),它們是(﹣3,0)(﹣3,2)(0,﹣3)(0,2)(2﹣3)(2,0);

2)只有(﹣3,2)在第二象限, M在第二象限的概率=;

3)如圖,過點M能作4⊙O的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運(yùn)動,伴隨點P的運(yùn)動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運(yùn)動.點P、K同時開始運(yùn)動,當(dāng)點K到達(dá)點F時停止運(yùn)動,點P也隨之停止.設(shè)點P、K運(yùn)動的時間是t秒(t>0).

(1)當(dāng)t=1時,KE=_____,EN=_____

(2)當(dāng)t為何值時,△APM的面積與△MNE的面積相等?

(3)當(dāng)點K到達(dá)點N時,求出t的值;

(4)當(dāng)t為何值時,△PKB是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC

1)若AB=4,AC=5,則BC邊的取值范圍是  ;

2)點DBC延長線上一點,過點DDE∥AC,交BA的延長線于點E,若∠E=55°∠ACD=125°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰直角△ABC中,BCAC,∠ACB90°,將該三角形在直角坐標(biāo)系中放置.

1)如圖(1),過點AADx軸,當(dāng)B點為(0,1),C點為(3,0)時,求OD的長;

2)如圖(2),將斜邊頂點A、B分別落在y軸上、x軸上,若A點為(0,1),B點為(4,0),求C點坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,AECD,AD、BE相交于點P,BQDAQ,∠BPQ的度數(shù)是_____;若PQ3,EP1,則DA的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)接于⊙O,E為弧CD上任意一點,連接DE,AE.

(1)求∠AED的度數(shù);

(2)如圖②,過點BBFDE交⊙O于點F,連接AF,AF=1,AE=4,求DE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外接圓,的中點,延長線上一點,若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEFAB,F為垂足.下列結(jié)論:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是(  。

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)-2≤x≤1時,二次函數(shù)y=-(x-m)2+m2+1有最大值4,則實數(shù)m的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案