【題目】如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),且∠APB=135°.求證:∠APB是∠MON的智慧角.
(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子分別表示∠APB的度數(shù)和△AOB的面積.
(3)如圖3,C是函數(shù)y=(x>0)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)C的直線CD分別交x軸和y軸于A,B兩點(diǎn),且滿足BC=2CA,請(qǐng)求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).
【答案】(1)證明見(jiàn)解析 (2)∠APB=180°﹣α,S△AOB=2sinα (3)(,)或(,﹣)
【解析】
(1)由角平分線求出∠AOP=∠BOP=∠MON=45°,再證出∠OAP=∠OPB,證明△AOP∽△POB,得出對(duì)應(yīng)邊成比例,得出OP2=OAOB,即可得出結(jié)論;
(2)由∠APB是∠MON的智慧角,得出,證出△AOP∽△POB,得出對(duì)應(yīng)角相等∠OAP=∠OPB,即可得出∠APB=180°﹣α;過(guò)點(diǎn)A作AH⊥OB于H,由三角形的面積公式得出:S△AOB=OBAH,即可得出S△AOB=2sinα;
(3)設(shè)點(diǎn)C(a,b),則ab=3,過(guò)點(diǎn)C作CH⊥OA于H;分兩種情況:
①當(dāng)點(diǎn)B在y軸正半軸上時(shí);當(dāng)點(diǎn)A在x軸的負(fù)半軸上時(shí),BC=2CA不可能;當(dāng)?shù)?/span>A在x軸的正半軸上時(shí);先求出,由平行線得出△ACH∽△ABO,得出比例式:,得出OB=3b,OA=,求出OAOB=,根據(jù)∠APB是∠AOB的智慧角,得出OP,即可得出點(diǎn)P的坐標(biāo);
②當(dāng)點(diǎn)B在y軸的負(fù)半軸上時(shí);由題意得出:AB=CA,由AAS證明△ACH≌△ABO,得出OB=CH=b,OA=AH=a,得出OAOB=,求出OP,即可得出點(diǎn)P的坐標(biāo).
(1)證明:∵∠MON=90°,P為∠MON的平分線上一點(diǎn),
∴∠AOP=∠BOP=∠MON=45°,
∵∠AOP+∠OAP+∠APO=180°,
∴∠OAP+∠APO=135°,
∵∠APB=135°,
∴∠APO+∠OPB=135°,
∴∠OAP=∠OPB,
∴△AOP∽△POB,
∴,
∴OP2=OAOB,
∴∠APB是∠MON的智慧角;
(2)解:∵∠APB是∠MON的智慧角,
∴OAOB=OP2,
∴,
∵P為∠MON的平分線上一點(diǎn),
∴∠AOP=∠BOP=α,
∴△AOP∽△POB,
∴∠OAP=∠OPB,
∴∠APB=∠OPB+∠OPA=∠OAP+∠OPA=180°﹣α,
即∠APB=180°﹣α;
過(guò)點(diǎn)A作AH⊥OB于H,連接AB;如圖1所示:
則S△AOB=OBAH=OBOAsinα=OP2sinα,
∵OP=2,
∴S△AOB=2sinα;
(3)設(shè)點(diǎn)C(a,b),則ab=3,過(guò)點(diǎn)C作CH⊥OA于H;分兩種情況:
①當(dāng)點(diǎn)B在y軸正半軸上時(shí);當(dāng)點(diǎn)A在x軸的負(fù)半軸上時(shí),如圖2所示:
BC=2CA不可能;
當(dāng)點(diǎn)A在x軸的正半軸上時(shí),如圖3所示:
∵BC=2CA,
∴,
∵CH∥OB,
∴△ACH∽△ABO,
∴,
∴OB=3b,OA= ,
∴OAOB=,
∵∠APB是∠AOB的智慧角,
∴OP=,
∵∠AOB=90°,OP平分∠AOB,
∴點(diǎn)P的坐標(biāo)為:(,);
②當(dāng)點(diǎn)B在y軸的負(fù)半軸上時(shí),如圖4所示:
∵BC=2CA,
∴AB=CA,
在△ACH和△ABO中,
,
∴△ACH≌△ABO(AAS),
∴OB=CH=b,OA=AH=a,
∴OAOB=ab=,
∵∠APB是∠AOB的智慧角,
∴OP=,
∵∠AOB=90°,OP平分∠AOB,
∴點(diǎn)P的坐標(biāo)為:(,﹣);
綜上所述:點(diǎn)P的坐標(biāo)為:(,),或(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D在⊙O上,連接AD,BD,∠A=∠B=30°.
證明:(1)BD是⊙O的切線
(2)如果BD=2求OC的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在寬為22米的九州大道兩邊安裝路燈,路燈的燈臂CD長(zhǎng)2米,且與燈柱BC成120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過(guò)公路路面的中心線時(shí)照明效果最佳,此時(shí),路燈的燈柱BC高度應(yīng)該設(shè)計(jì)為( 。
A. (11﹣2)米 B. (11﹣2)米 C. (11﹣2)米 D. (11﹣4)米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,污水處理公司為某樓房建一座周長(zhǎng)為30米的三級(jí)污水處理池,平面圖為矩形,米,中間兩條隔墻分別為、,池墻的厚度不考慮.
(1)用含的代數(shù)式表示外圍墻的長(zhǎng)度;
(2)如果設(shè)計(jì)時(shí)要求矩形水池恰好被隔墻分成三個(gè)全等的矩形,且它們均與矩形相似,求此時(shí)的長(zhǎng);
(3)如果設(shè)計(jì)時(shí)要求矩形水池恰好被隔墻分成三個(gè)全等的正方形.已知池的外圍墻建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)每米300元,池底建造的單價(jià)為每平方米100元.試計(jì)算此項(xiàng)工程的總造價(jià).(結(jié)果精確到1元)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人為了測(cè)量小山頂上的塔ED的高,他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60 m到達(dá)山腳點(diǎn)B,測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過(guò)O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求證:OFDE=OE2OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線L.現(xiàn)有點(diǎn)A(2,0)和拋物線L上的點(diǎn)B(-1,n),請(qǐng)完成下列任務(wù):
(1)(嘗試)
當(dāng)t=2時(shí),拋物線y=t(x2-3x+2)+(1-t)(-2x+4)的頂點(diǎn)坐標(biāo)為________;
(2)判斷點(diǎn)A是否在拋物線L上;
(3)求n的值.
(4)(發(fā)現(xiàn))
通過(guò)(2)和(3)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線L總過(guò)定點(diǎn),坐標(biāo)為________.
(5)(應(yīng)用)
二次函數(shù)y=-3x2+5x+2是二次函數(shù)y=x23x+2和一次函數(shù)y=-2x+4的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,0),B(0,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△COD,設(shè)E為AD的中點(diǎn).
(1)若F為CD上一動(dòng)點(diǎn),求出當(dāng)△DEF與△COD相似時(shí)點(diǎn)F的坐標(biāo);
(2)過(guò)E作x軸的垂線l,在直線l上是否存在一點(diǎn)Q,使∠CQO=∠CDO?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com