【題目】提出問(wèn)題:如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)P在對(duì)角線AC上,一條直角邊經(jīng)過(guò)點(diǎn)B,另一條直角邊交邊DC與點(diǎn)E,求證:PB=PE
分析問(wèn)題:學(xué)生甲:如圖1,過(guò)點(diǎn)P作PM⊥BC,PN⊥CD,垂足分別為M,N通過(guò)證明兩三角形全等,進(jìn)而證明兩條線段相等.
學(xué)生乙:連接DP,如圖2,很容易證明PD=PB,然后再通過(guò)“等角對(duì)等邊”證明PE=PD,就可以證明PB=PE了.
解決問(wèn)題:請(qǐng)你選擇上述一種方法給予證明.
問(wèn)題延伸:如圖3,移動(dòng)三角板,使三角板的直角頂點(diǎn)P在對(duì)角線AC上,一條直角邊經(jīng)過(guò)點(diǎn)B,另一條直角邊交DC的延長(zhǎng)線于點(diǎn)E,PB=PE還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
【答案】證明:如圖1,
∵四邊形ABCD為正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四邊PMCN為矩形,PM=PN,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBM=∠PEN,
在△PBM和△PEN中
∴△PBM≌△PEN(AAS),
∴PB=PE;
如圖2,連結(jié)PD,
∵四邊形ABCD為正方形,
∴CB=CD,CA平分∠BCD,
∴∠BCP=∠DCP,
在△CBP和△CDP中
,
∴△CBP≌△CDP(SAS),
∴PB=PD,∠CBP=∠CDP,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBC=∠PED,
∴∠PED=∠PDE,
∴PD=PE,
∴PB=PD;
如圖3,PB=PE還成立.
理由如下:過(guò)點(diǎn)P作PM⊥BC,PN⊥CD,垂足分別為M,N,
∵四邊形ABCD為正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四邊PMCN為矩形,PM=PN,
∴∠MPN=90°,
∵∠BPE=90°,∠BCD=90°,
∴∠BPM+∠MPE=90°,
而∠MEP+∠EPN=90°,
∴∠BPM=∠EPN,
在△PBM和△PEN中
,
∴△PBM≌△PEN(AAS),
∴PB=PE.
【解析】對(duì)于圖1,根據(jù)正方形的性質(zhì)得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,則四邊PMCN為矩形,根據(jù)角平分線性質(zhì)得PM=PN,根據(jù)四邊形內(nèi)角和得到∠PBC+∠CEP=180°,再利用等角的補(bǔ)角相等得到∠PBM=∠PEN,然后根據(jù)“AAS”證明△PBM≌△PEN,則PB=PE;
對(duì)于圖2,連結(jié)PD,根據(jù)正方形的性質(zhì)得CB=CD,CA平分∠BCD,根據(jù)角平分線的性質(zhì)得∠BCP=∠DCP,再根據(jù)“SAS”證明△CBP≌△CDP,則PB=PD,∠CBP=∠CDP,根據(jù)四邊形內(nèi)角和得到∠PBC+∠CEP=180°,再利用等角的補(bǔ)角相等得到∠PBC=∠PED,則∠PED=∠PDE,所以PD=PE,于是得到PB=PD;
對(duì)于圖3,過(guò)點(diǎn)P作PM⊥BC,PN⊥CD,垂足分別為M,N,根據(jù)正方形的性質(zhì)得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,得到四邊PMCN為矩形,PM=PN,則∠MPN=90°,利用等角的余角相等得到∠BPM=∠EPN,然后根據(jù)“AAS”證明△PBM≌△PEN,所以PB=PE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(a+1,2a-1)關(guān)于x軸的對(duì)稱點(diǎn)在第一象限,則|a+2|-|1-a|=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB,以下作圖不可能的是( )
A. 在AB上取一點(diǎn)C,使AC=BC
B. 在AB的延長(zhǎng)線上取一點(diǎn)C,使BC=AB
C. 在BA的延長(zhǎng)線上取一點(diǎn)C,使BC=AB
D. 在BA的延長(zhǎng)線上取一點(diǎn)C,使BC=2AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有5根小木棒,長(zhǎng)度分別為2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的個(gè)數(shù)為( )
A.5個(gè)B.6個(gè)C.7個(gè)D.8個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com