【題目】已知數(shù)軸上點(diǎn)A、B、C所表示的數(shù)分別是﹣2+8、xAC6

1)畫出數(shù)軸并標(biāo)出點(diǎn)A、B的位置.

2)確定x的值為   

3)若點(diǎn)M,N分別是ABAC的中點(diǎn),求線段MN的長(zhǎng)度.

【答案】1)詳見解析;(24或﹣8;(3MN28

【解析】

1)在數(shù)軸上表示出點(diǎn)、的位置即可求解;

2的長(zhǎng)表示為,則,再解絕對(duì)值方程得

3)討論:當(dāng)點(diǎn)、、所表示的數(shù)分別是,時(shí),得到點(diǎn)表示的數(shù)為,點(diǎn)的坐標(biāo)是;當(dāng)點(diǎn)、所表示的數(shù)分別是,,時(shí),則點(diǎn)表示的數(shù)為,點(diǎn)的坐標(biāo)是,然后分別計(jì)算MN的長(zhǎng).

1)如圖所示:

2)∵

故答案為:

3)當(dāng)點(diǎn)、、所表示的數(shù)分別是,時(shí)

∵點(diǎn)、分別是的中點(diǎn)

∴點(diǎn)表示的數(shù)為,點(diǎn)的坐標(biāo)是

當(dāng)點(diǎn)、所表示的數(shù)分別是,﹣8時(shí),

∵點(diǎn)、分別是、的中點(diǎn),

∴點(diǎn)表示的數(shù)為,點(diǎn)的坐標(biāo)是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某項(xiàng)工程由甲、乙兩個(gè)工程隊(duì)合作完成,先由甲隊(duì)單獨(dú)做3天,剩下的工作由甲、乙兩工程隊(duì)合作完成,工程進(jìn)度滿足如圖所示的函數(shù)關(guān)系:

1)求出圖象中②部分的解析式,并求出完成此項(xiàng)工程共需的天數(shù);

2)該工程共支付8萬元,若按完成的工作量所占比例支付工資,甲工程隊(duì)?wèi)?yīng)得多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有兩條鄉(xiāng)村公路,長(zhǎng)為1200米,長(zhǎng)為1600米,一個(gè)人騎摩托車從處以20/秒的速度勻速沿公路處行駛;另一人騎自行車從處以5/秒的速度勻速沿公路處行駛,并且兩人同時(shí)出發(fā).

1)求經(jīng)過多少秒摩托車追上自行車?

2)求兩人均在行駛途中時(shí),經(jīng)過多少秒兩人在行進(jìn)路線上相距150米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且,b滿足

1)求線段AB的長(zhǎng);

2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程的解,在數(shù)軸上是否存在點(diǎn)P,使得PA+PB=PC?若存在,求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說明理由;

3)在(1)(2)條件下,點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒4個(gè)單位長(zhǎng)度和9個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請(qǐng)問:AB﹣BC的值是否隨時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其常數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖點(diǎn)A(1,1),B(2,﹣3),點(diǎn)P為x軸上一點(diǎn),當(dāng)|PA﹣PB|最大時(shí),點(diǎn)P的坐標(biāo)為(  )

A. (﹣1,0) B. ,0) C. ,0) D. (1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x+1)(xm) (a為常數(shù),a1)的圖像過點(diǎn)(1,2).

(1)當(dāng)a=2時(shí),m的值;

(2)試說明方程a(x+1)(xm)=0兩根之間(不包括兩根)存在唯一整數(shù),并求出這個(gè)整數(shù);

(3)設(shè)Mn,y1)、Nn+1,y2)是拋物線上兩點(diǎn),當(dāng)n <-1時(shí),試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察規(guī)形圖,試探究之間的關(guān)系,并說明理由;

(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖2,把一塊三角尺XYZ放置在上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)BC,若,則________;

②如圖3,DC平分EC平分,若,求的度數(shù);

③如圖4,10 等分線相交于點(diǎn),若,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是弧AF的三等分點(diǎn)(弧AG>弧GF),BGAF于點(diǎn)H.若弧AB的度數(shù)為30°,則∠GHF等于( )

A. 40° B. 45° C. 55° D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.

(1)求拋物線的函數(shù)表達(dá)式.

(2)當(dāng)t為何值時(shí),矩形ABCD的周長(zhǎng)有最大值?最大值是多少?

(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案