【題目】如圖,已知AB為⊙O的直徑,C、D是半圓的三等分點,延長AC,BD交于點E.
(1)求∠E的度數(shù);
(2)點M為BE上一點,且滿足EMEB=CE2 , 連接CM,求證:CM為⊙O的切線.

【答案】
(1)解:∵C、D是半圓的三等分點,

= = ,

連接OC、OD,如圖1所示:

∵AB為⊙O的直徑,

∴∠AOC=∠COD=∠DOB=60°,

∵OA=OC=OD=OB,

∴△AOC、△DOB為正三角形,

∴∠EAB=∠EBA=60°,

∴∠E=60°


(2)證明:連接BC,如圖2所示:

∵EMEB=CE2,

,

∵∠E=∠E,

∴△CEM∽△BEC,

∵AB為⊙O的直徑,

∴∠ACB=90°,

∴∠ECB=90°,

∴∠EMC=∠ECB=90°,

∵∠AOC=∠DOB=60°,

∴OC∥BE,

∵∠EMC=90°,

∴∠OCM=90°,

∴OC⊥CM,

∴CM為⊙O的切線.


【解析】(1)由半圓的三等分點,得 = = ,連接OC、OD,則∠AOC=∠COD=∠DOB=60°,證得△AOC、△DOB為正三角形,得出∠EAB=∠EBA=60°,即可得出結(jié)果;(2)連接BC,由 ,∠E=∠E,證得△CEM∽△BEC,由AB為⊙O的直徑,得出∠ACB=90°,∠ECB=90°,由△CEM∽△BEC得出∠EMC=∠ECB=90°,由∠AOC=∠DOB=60°,證得OC∥BE,證得∠OCM=90°,即可得出結(jié)論.
【考點精析】本題主要考查了切線的判定定理和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是(
A.4
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2= (k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式;
(2)當y2>y1>0時,寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,若∠BAC=80°,∠C=50°,取AC中點P,連接PO并延長交BC于點M,連接AM,則∠BAM=(
A.45°
B.30°
C.50°
D.55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知經(jīng)過原點的拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣1,下列結(jié)論中:
①ab>0,②a+b+c>0,③當﹣2<x<0時,y<0.
正確的個數(shù)是( 。

A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.

(1)用含a的式子表示花圃的面積.
(2)如果通道所占面積是整個長方形空地面積的 , 求出此時通道的寬.
(3)已知某園林公司修建通道、花圃的造價y1(元)、y2(元)與修建面積x(m2)之間的函數(shù)關(guān)系如圖2所示,如果學校決定由該公司承建此項目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時,修建的通道和花圃的總造價最低,最低總造價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=a,AD=b,點M為BC邊上一動點(點M與點B、C不重合),連接AM,過點M作MN⊥AM,垂足為M,MN交CD或CD的延長線于點N.

(1)求證:△CMN∽△BAM;
(2)設(shè)BM=x,CN=y,求y關(guān)于x的函數(shù)解析式.當x取何值時,y有最大值,并求出y的最大值;
(3)當點M在BC上運動時,求使得下列兩個條件都成立的b的取值范圍:①點N始終在線段CD上,②點M在某一位置時,點N恰好與點D重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.

(1)求證:△AEF∽△ABC;
(2)求這個正方形零件的邊長;
(3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?

查看答案和解析>>

同步練習冊答案