【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,a),過點(diǎn)AABx軸,垂足為點(diǎn)B,△AOB的面積為

1)求k的值;

2)若一次函數(shù)ymx+n圖象經(jīng)過點(diǎn)A和反比例函數(shù)圖象上另一點(diǎn),且與x軸交于M點(diǎn),求AM的值;

3)在(2)的條件下,如果以線段AM為一邊作等邊△AMN,頂點(diǎn)N在另一個(gè)反比例函數(shù)上,則k'=   

【答案】1;(2 ;(3):4 .

【解析】

1)根據(jù)點(diǎn)A的坐標(biāo)以及三角形的面積公式即可求出a值,再根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出k的值;

2)根據(jù)反比例函數(shù)解析式可求出點(diǎn)C的坐標(biāo),由點(diǎn)A、C的坐標(biāo)利用待定系數(shù)法即可求出直線AM的解析式,令直線AM的解析式中y0求出x值,即可得出點(diǎn)M的坐標(biāo),再利用勾股定理即可求出線段AM的長(zhǎng)度;

3)設(shè)點(diǎn)N的坐標(biāo)為(m,n),由等邊三角形的性質(zhì)結(jié)合三角函數(shù)找出關(guān)于m、n的關(guān)系來求得點(diǎn)N.

解:(1)∵SAOBOBAB

×1×a,

a

∴點(diǎn)A(﹣1,).

∵反比例函數(shù)y的圖象經(jīng)過點(diǎn)A (﹣1,),

k=﹣

2)∵Ct,)在反比例函數(shù)y的圖象上,

t=﹣,解得:t3,

C3,).

A(﹣1,)、C3,)代入ymx+n中,

得:,解得:,

∴直線AM的解析式為yx+

yx+y0,則x2

M2,0).

RtABM中,AB,BM2﹣(﹣1)=3

AM2

3)設(shè)點(diǎn)N的坐標(biāo)為(m,n),

∵△AMN為等邊三角形,且AM2

∴∠AMN60°,

tanAMB,

∴∠AMB30°,

∴∠NMB90°,

N2,2),

同法可得:當(dāng)△AMN′是等邊三角形時(shí),可得N′(﹣1,﹣),

∵頂點(diǎn)N在另一個(gè)反比例函數(shù)y上,

k′=4

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各數(shù)填在相應(yīng)的集合里。

-3.8, -20%, 4.3, -∣-∣, , 0, -(-),

整數(shù)集合:{ … };

分?jǐn)?shù)集合:{ … };

正數(shù)集合:{ … };

負(fù)數(shù)集合:{ … }.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°sinABC8,點(diǎn)DAB的中點(diǎn),過點(diǎn)BCD的垂線,垂足為點(diǎn)E.

(1)求線段CD的長(zhǎng);

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】碭山酥梨是一種馳名中外的特色水果,它是梨的一種,因?yàn)槌霎a(chǎn)于碭山縣而得名,F(xiàn)有20筐碭山酥梨,以每筐25千克的質(zhì)量為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

(1)20筐碭山酥梨中,最重的一筐比最輕的一筐重多少千克?

(2)與標(biāo)準(zhǔn)質(zhì)量比較,這20筐碭山酥梨總計(jì)超過或不足多少千克?

(3)若碭山酥梨每千克售價(jià)4元,則這20筐碭山酥梨可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列貨車從北京開往烏魯木齊,以58km/h的平均速度行駛需要65h.為了實(shí)施西部大開發(fā),京烏線決定全線提速.

1)如果提速后平均速度為vkm/h,全程運(yùn)營(yíng)時(shí)間為t小時(shí),試寫出tv之間的函數(shù)表達(dá)式;

2)如果提速后平均速度為78km/h,求提速后全程運(yùn)營(yíng)時(shí)間;

3)如果全程運(yùn)營(yíng)的時(shí)間控制在40h內(nèi),那么提速后,平均速度至少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);

(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長(zhǎng)最小,求出點(diǎn)P,Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】摩拜公司為了調(diào)查在某市投放的共享單車使用情況,對(duì)4月份第一個(gè)星期中每天摩拜單車使用情況進(jìn)行統(tǒng)計(jì),結(jié)果如圖所示.

(1)求這一個(gè)星期每天單車使用情況的眾數(shù)、中位數(shù)和平均數(shù);

(2)(1)中的結(jié)果估計(jì)4月份一共有多少萬車次?

(3)摩拜公司在該市共享單車項(xiàng)目中共投入9600萬元,估計(jì)本年度共租車3200萬車次,若每車次平均收入租車費(fèi)0.75元,請(qǐng)估計(jì)本年度全年租車費(fèi)收入占總投入的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,過點(diǎn)BBEABAD于點(diǎn)E,將線段BE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°EF的位置,點(diǎn)M(點(diǎn)M不與點(diǎn)B重合)在直線AB上,連結(jié)EM

(1)當(dāng)點(diǎn)M在線段AB的延長(zhǎng)線上時(shí),將線段EM繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°EN1的位置,連結(jié)FN1,在圖中畫出圖形,求證:FN1AB;

(2)當(dāng)點(diǎn)M在線段BA的延長(zhǎng)線上時(shí),將線段EM繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°EN2的位置,連結(jié)FN2,在圖中畫出圖形,點(diǎn)N2在直線FN1上嗎?請(qǐng)說明理由;

(3)AB3,AD6DE1,設(shè)BMx,在(1)、(2)的條件下,試用含x的代數(shù)式表示△FMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校在星期天用藥熏消毒法對(duì)教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(小時(shí))成正比例;藥物釋放完畢后,yx成反比例,如圖所示.根據(jù)以上信息解答下列問題:

(1)求藥物釋放完畢后,yx之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;

(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么,從星期天下午500開始對(duì)某教室釋放藥物進(jìn)行消毒,到星期一早上700時(shí)學(xué)生能否進(jìn)入教室?

查看答案和解析>>

同步練習(xí)冊(cè)答案