【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點(diǎn)E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.

(1)求證:AEF∽△ABC:

(2)求正方形EFMN的邊長.

【答案】(1)詳見解析;(2)正方形的邊長為8cm.

【解析】

(1)根據(jù)兩角對應(yīng)相等的兩個三角形相似即可證明;
(2)利用相似三角形的性質(zhì),構(gòu)建方程即可解決問題;

(1)證明:∵四邊形EFMN是正方形,

∴EF∥BC,

∴∠AEF=∠B,∠AFE=∠C,

∴△AEF∽△ABC.

(2)解:設(shè)正方形EFMN的邊長為xcm.

AP=AD-x=12-x(cm)

∵△AEF∽△ABC, AD⊥BC,

,

,

∴x=8,

∴正方形的邊長為8cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=―ax2+2ax+c(a>0)的圖象交x軸于AB兩點(diǎn),交y軸于點(diǎn)C,過A的直線y=kx+2k(k≠0)與這個二次函數(shù)圖象交于另一點(diǎn)F,與其對稱軸交于點(diǎn)E,與y軸交于點(diǎn)D,且DE=EF

(1)求A點(diǎn)坐標(biāo);

(2)若△BDF的面積為12,求此二次函數(shù)的表達(dá)式;

(3)設(shè)二次函數(shù)圖象頂點(diǎn)為P,連接PF,PC,若∠CPF=2∠DAB,求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是直線AB上任一點(diǎn),射線OD和射線OE分別平分∠AOC和∠BOC.

(1)填空:與∠AOE互補(bǔ)的角有   

(2)若∠COD=30°,求∠DOE的度數(shù);

(3)當(dāng)∠AOD=α°時,請直接寫出∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是射線上一點(diǎn),過軸于點(diǎn),以為邊在其右側(cè)作正方形,過的雙曲線邊于點(diǎn),則的值為  

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 滿足社區(qū)居民健身的需要,市政府準(zhǔn)備采購若干套健身器材免費(fèi)提供給社區(qū),經(jīng)考察,公司兩種型號的健身器可供選擇.

(1)松公司2015年每套健身器的售價為萬元,經(jīng)過連續(xù)兩年降價,2017年每售價 萬元,求每型健身器年平均下降 ;

(2)2017年市政府經(jīng)過招標(biāo),決定年內(nèi)采購安裝松公司兩種型號的健身器材,采購專項(xiàng)費(fèi)總計不超過萬元,采購合同規(guī)定:每套健身器售價為萬元,每套健身器售價 萬元.

型健身器最多可購買多少套?

安裝完成后,若每套型和健身器一年的養(yǎng)護(hù)費(fèi)分別是購買價的 .政府計劃支出 萬元進(jìn)行養(yǎng)護(hù).問該計劃支出能否滿足一年的養(yǎng)護(hù)需要?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團(tuán)遇到這樣一個題目:

如圖1,在中,點(diǎn)在線段上,,,,求的長.

經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn),交的延長線于點(diǎn),通過構(gòu)造就可以解決問題(如圖

請回答:    

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形中,對角線相交于點(diǎn),,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,ADBC于點(diǎn)D,BC=10cmAD=8cmE點(diǎn)F點(diǎn)分別為AB,AC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)求菱形AEDF的面積;

3)若HF點(diǎn)出發(fā),在線段FE上以每秒2cm的速度向E點(diǎn)運(yùn)動,點(diǎn)PB點(diǎn)出發(fā),在線段BC上以每秒3cm的速度向C點(diǎn)運(yùn)動,問當(dāng)t為何值時,四邊形BPHE是平行四邊形?當(dāng)t取何值時,四邊形PCFH是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)(3分)如圖(1),正方形AEGH的頂點(diǎn)E、H在正方形ABCD的邊上,直接寫出HDGCEB的結(jié)果(不必寫計算過程);

(2)(3分)將圖(1)中的正方形AEGH繞點(diǎn)A旋轉(zhuǎn)一定角度,如圖(2),求HDGCEB;

(3)(2分)把圖(2)中的正方形都換成矩形,如圖(3),且已知DAAB=HAAE=m: n,此時HDGCEB的值與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫出變化后的結(jié)果(不必寫計算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A,O,B依次在直線MN上.將射線OA繞點(diǎn)O沿順時針方向以每秒18°的速度旋轉(zhuǎn),同時射線OB繞點(diǎn)O沿順時針方向以每秒的速度旋轉(zhuǎn)(如圖2).設(shè)旋轉(zhuǎn)時間為t0≤t≤30,單位秒).

1)當(dāng)t10時,∠AOB   °;

2)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OM是由射線OB、射線OA組成的角(指大于而不超過180°的角)的平分線?如果存在,請求出t的值;如果不存在,請說明理由.

3)在運(yùn)動過程中,當(dāng)∠AOB45°時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案