【題目】如圖,的對角線相交于點(diǎn),上的兩點(diǎn),并且,連接,.

1)求證;

2)若,連接,,判斷四邊形的形狀,并說明理由.

【答案】1)詳見解析;(2)四邊形BEDF是矩形,理由詳見解析.

【解析】

1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得OAOC,OBOD,由AECF即可得OEOF,利用SAS證明BOE≌△DOF 根據(jù)全等三角形的性質(zhì)即可得BEDF;(2)四邊形BEDF是矩形.由(1)得ODOB,OEOF, 根據(jù)對角線互相平方的四邊形為平行四邊形可得四邊形BEDF是平行四邊形, 再由BDEF,根據(jù)對角線相等的平行四邊形為矩形即可判定四邊形EBFD是矩形.

1)證明:∵四邊形ABCD是平行四邊形,

OAOC,OBOD,

AECF,

OEOF

在△BOE和△DOF中,

,

∴△BOE≌△DOFSAS),

BEDF;

2)四邊形BEDF是矩形.理由如下:

如圖所示:

ODOBOEOF,

∴四邊形BEDF是平行四邊形,

BDEF,

∴四邊形EBFD是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D、E分別在AB、AC上,且CEBC,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得到CF,連接EF

1)求證:△BDC≌△EFC

2)若EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BD是∠ABC的角平分線,過點(diǎn)D分別作DEAB,DFBC,垂足分別為E、F.

(1)求證:△AED≌△CFD;

(2)AB=10,BC=8,ABC=60°,求BD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,ABC的三個頂點(diǎn)坐標(biāo)分別為A(-4,1)、B(-1,1)、C(-4,3).

(1)畫出RtABC關(guān)于原點(diǎn)O成中心對稱的圖形RtA1B1C1

(2)若RtABCRtA2BC2關(guān)于點(diǎn)B中心對稱,則點(diǎn)A2的坐標(biāo)為 、C2的坐標(biāo)為

(3)求點(diǎn)A繞點(diǎn)B旋轉(zhuǎn)180°到點(diǎn)A2時,點(diǎn)A在運(yùn)動過程中經(jīng)過的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠A=60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF=120°,DE與線段AB相交于點(diǎn)E,DF與線段AC(或AC的延長線)相交于點(diǎn)F.

(1)如圖,若DF⊥AC,垂足為F,證明:DE=DF

(2)如圖,將(1)中的∠EDF繞點(diǎn)D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點(diǎn)F.DE=DF仍然成立嗎?說明理由。

(3)∠EDF繼續(xù)繞點(diǎn)D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點(diǎn)F,DE=DF仍然成立嗎? 直接說出結(jié)論,不必說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(-2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段OB于點(diǎn)F,Cy軸正半軸上一點(diǎn),且OC=AB,拋物線y=-x2+mx+n的圖象經(jīng)過A,C兩點(diǎn).

(1)求此拋物線的函數(shù)表達(dá)式;

(2)求證:∠BEF=AOE;

(3)當(dāng)EOF為等腰三角形時,求此時點(diǎn)E的坐標(biāo);

(4)在(3)的條件下,當(dāng)直線EFx軸于點(diǎn)D,P為(1)中拋物線上一動點(diǎn),直線PEx軸于點(diǎn)G,在直線EF上方的拋物線上是否存在一點(diǎn)P,使得EPF的面積是EDG面積的(2+1)倍.若存在,請直接寫出點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點(diǎn)A的坐標(biāo)為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點(diǎn)B的坐標(biāo);

(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);

(3)點(diǎn)P是(2)中拋物線對稱軸上一動點(diǎn),且以1個單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時間為t秒.

當(dāng)t為   秒時,PAD的周長最小?當(dāng)t為   秒時,PAD是以AD為腰的等腰三角形?(結(jié)果保留根號)

點(diǎn)P在運(yùn)動過程中,是否存在一點(diǎn)P,使PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°后的△A1B1C1

2)將△ABC向右平移3個單位,作出平移后的△A2B2C2

3)若點(diǎn)M是平面直角坐標(biāo)系中直線AB上的一個動點(diǎn),點(diǎn)Nx軸上的一個動點(diǎn),且以O、A2M、N為頂點(diǎn)的四邊形是平行四邊形,請直接寫出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長方形OABC的邊OA、OC分別在x軸、y軸上,B點(diǎn)坐標(biāo)是(8,4),將AOC沿對角線AC翻折得ADC,ADBC相交于點(diǎn)E

1)求證:CDE≌△ABE

2)求E點(diǎn)坐標(biāo);

3)如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿著折線ABCO運(yùn)動(到點(diǎn)O停止),是否存在點(diǎn)P,使得POA的面積等于ACE的面積,若存在,直接寫出點(diǎn)P坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案