精英家教網 > 初中數學 > 題目詳情

【題目】如圖,以△ABC的邊AB為直徑作⊙O,交邊BC于點D,點E是 上一點.
(1)若AC為⊙O的切線,試說明:∠AED=∠CAD;
(2)若AE平分∠BAD,延長DE、AB交于點P,若PB=BO,DE=2,求PD的長.

【答案】
(1)證明:∵AB是⊙O的直徑,

∴∠ADB=90°,

∵AC是切線,

∴∠CAB=90°,

∴∠DAB+∠DBA=90°,∠DAB+∠CAD=90°,

∴∠CAD=∠DBA,

∵∠DBA=∠AED,

∴∠AED=∠CAD.


(2)解:連接OE.

∵AE平分∠BAD,

∴∠DAE=∠EAB,

∵OA=OE,

∴∠AEO=∠EAB,

∴∠DAE=∠AEO,

∴AD∥OE,

= = ,

∴DP=3DE=6.


【解析】(1)首先證明∠CAD=∠B,根據∠AED=∠B即可證明結論.(2)只要證明AD∥OE,可得 = = ,由此即可解決問題.
【考點精析】本題主要考查了切線的性質定理的相關知識點,需要掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀材料.

點M,N在數軸上分別表示數m和n,我們把m,n之差的絕對值叫做點M,N之間的距離,即MN=|m﹣n|.如圖,在數軸上,點A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  

(2)|1﹣(﹣4)|表示哪兩點的距離?

(3)點P為數軸上一點,其表示的數為x,用含有x的式子表示BP=  ,當BP=4時,x=  ;當|x﹣3|+|x+2|的值最小時,x的取值范圍是  

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,點P在射線AC上,作點P關于直線CD的對稱點Q,作射線BQ交射線DC于點E,連接BP.

(1)當點P在線段AC上時,如圖1.

依題意補全圖1;

EQ=BP,則∠PBE的度數為   ,并證明;

(2)當點P在線段AC的延長線上時,如圖2.若EQ=BP,正方形ABCD的邊長為1,請寫出求BE長的思路.(可以不寫出計算結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據圖形,完成下面的推理:

因為∠1=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因為AB與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因為∠3=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一快遞小哥騎電動車需要在規(guī)定的時間把快遞送到某地,若他以的速度行駛就會提前2分鐘到達,如果他以的速度行駛就要遲到6分鐘。

(1)快遞小哥行駛的路程是多少千米;

(2)當快遞小哥以的速度行駛10分鐘后,因某段路擁堵耽誤了3分鐘,為了剛好在規(guī)定時間到達,快遞小哥應以怎祥的速度行駛。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先閱讀下面的內容,再解決問題,

例題:若m2+2mn+2n2﹣6n+9=0,求mn的值.

解:∵m2+2mn+2n2﹣6n+9=0

m2+2mn+n2+n2﹣6n+9=0

m+n2+n﹣32=0

m+n=0,n﹣3=0

m=﹣3n=3

問題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.

2)已知ab,cABC的三邊長,滿足a2+b2=10a+8b﹣41,且cABC中最長的邊,求c的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某地在山區(qū)修建高速公路時需挖通一條隧道,為估計這條隧道的長度需測出這座山A、B間的距離,結合所學知識或方法,設計測量方案你能給出什么好的方法嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某幼兒園舉行用火柴棒擺“金魚”比賽,如圖所示,請仔細觀察并找出規(guī)律,解答下列問題:

(1)按照此規(guī)律,擺第n個圖時,需用火柴棒的根數是多少?

(2)求擺第50個圖時所需用的火柴棒的根數;

(3)按此規(guī)律用1202根火柴棒擺出第n個圖形,求n的值.

查看答案和解析>>

同步練習冊答案