【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內(nèi)部,將圓形紙片沿著三角板的內(nèi)部邊緣滾動1周,回到起點位置時停止,若BC=7+2,圓形紙片的半徑為2,求圓心O運動的路徑長為_____.
【答案】15+5.
【解析】
添加如圖所示輔助線,圓心O的運動路徑長為,先求出△ABC的三邊長度,得出其周長,證四邊形OEDO1、四邊形O1O2HG、四邊形OO2IF均為矩形、四邊形OECF為正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,從而知△OO1O2∽△CBA,利用相似三角形的性質(zhì)即可得出答案.
如圖,圓心O的運動路徑長為,
過點O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分別為點D、F、G,
過點O作OE⊥BC,垂足為點E,
過點O2作O2H⊥AB,O2I⊥AC,垂足分別為點H、I,
在Rt△ABC中,∠ACB=90°、∠A=30°,
∴AC==7+6,AB=2BC=14+4,∠ABC=60°,
∴C△ABC=13+27,
∵O1D⊥BC、O1G⊥AB,
∴D、G為切點,
∴BD=BG,
在Rt△O1BD和Rt△O1BG中,
∵ ,
∴△O1BD≌△O1BG(HL),
∴∠O1BG=∠O1BD=30°,
在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,
∴BD==2,
∴OO1=7+2﹣2﹣2=5,
∵O1D=OE=2,O1D⊥BC,OE⊥BC,
∴O1D∥OE,且O1D=OE,
∴四邊形OEDO1為平行四邊形,
∵∠OED=90°,
∴四邊形OEDO1為矩形,
同理四邊形O1O2HG、四邊形OO2IF、四邊形OECF為矩形,
又OE=OF,
∴四邊形OECF為正方形,
∵∠O1GH=∠CDO1=90°,∠ABC=60°,
∴∠GO1D=120°,
又∵∠FO1D=∠O2O1G=90°,
∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,
同理,∠O1OO2=90°,
∴△OO1O2∽△CBA,
∴,即,
∴C△OO1O2=15+5,
即圓心O運動的路徑長為15+5.
故答案為15+5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他各項費用80元.
銷售單價x(元) | 3.5 | 5.5 |
銷售量y(袋) | 280 | 120 |
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與軸的一個交點為 ,與軸的交點為,過的直線為.
(1)求二次函數(shù)的解析式及點的坐標(biāo);
(2)直接寫出滿足時,的取值 ;
(3)在兩坐標(biāo)軸上是否存在點,使得是以為底邊的等腰三角形?若存在,求出的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于A、B兩點點A在點B的左邊,交y軸于點C,直線經(jīng)過點C與x軸交于點D,拋物線的頂點坐標(biāo)為.
請你直接寫出CD的長及拋物線的函數(shù)關(guān)系式;
求點B到直線CD的距離;
若點P是拋物線位于第一象限部分上的一個動點,則當(dāng)點P運動至何處時,恰好使?請你求出此時的P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣mx﹣(m+1)與x軸負(fù)半軸交于點A(x1,0),與x軸正半軸交于點B(x2,0)(OA<OB),與y軸交于點C,且滿足x12+x22﹣x1x2=13.
(1)求拋物線的解析式;
(2)以點B為直角頂點,BC為直角邊作Rt△BCD,CD交拋物線于第四象限的點E,若EC=ED,求點E的坐標(biāo);
(3)在拋物線上是否存在點Q,使得S△ACQ=2S△AOC?若存在,求出點Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AB、CD相交于點E,=,點D在上,連接CO,并延長CO交線段AB于點F,連接OA、OB,且OA=,tan∠OBA=.
(1)求證:∠OBA=∠OCD;
(2)當(dāng)△AOF是直角三角形時,求EF的長;
(3)是否存在點F,使得S△CEF=4S△BOF,若存在,請求EF的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的甬江宛如一條玉帶穿城而過,數(shù)學(xué)課外實踐活動中,小林在甬江岸邊的A, B兩點處,利用測角儀分別對西岸的一觀景亭D進(jìn)行測量.如圖,測得∠DAC=45°,∠DBC=65°,若AB=114米,求觀景亭D到甬江岸邊AC的距離約為多少米?
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個結(jié)論:
①abc<0;
②b<a﹣c;
③4a+2b+c>0;
④2c<3b;
⑤a+b<m(am+b),(m≠1的實數(shù))
⑥2a+b+c>0,其中正確的結(jié)論的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一種單價為30元的商品,如果以單價55元售出,那么每天可賣出200個,根據(jù)銷售經(jīng)驗,每降價1元,每天可多賣出10個,假設(shè)每個降價x(元),每天銷售y(個),每天獲得的利潤W(元).
(1)寫出y與x的函數(shù)關(guān)系式;
(2)求出W與x的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(3)降價多少元時,每天獲得的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com