【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉60°到AQ,連接PQ、QC.
(1)求證:△BAP≌△CAQ.
(2)若PA=3,PB=4,∠APB=150°,求PC的長度.
【答案】(1)見解析;(2)5
【解析】
(1)直接利用旋轉的性質結合全等三角形的判定與性質得出答案;
(2)直接利用等邊三角形的性質結合勾股定理即可得出答案.
(1)證明:∵線段AP繞點A逆時針旋轉60°到AQ,
∴AP=AQ,∠PAQ=60°,
∴△APQ是等邊三角形,∠PAC+∠CAQ=60°,
∵△ABC是等邊三角形,
∴∠BAP+∠PAC=60°,AB=AC,
∴∠BAP=∠CAQ,
在△BAP和△CAQ中,
,
∴△BAP≌△CAQ(SAS);
(2)∵由(1)得△APQ是等邊三角形,
∴AP=PQ=3,∠AQP=60°,
∵∠APB=150°,
∴∠PQC=150°﹣60°=90°,
∵PB=QC,
∴QC=4,
∴△PQC是直角三角形,
∴PC===5.
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的外接圓⊙O的直徑,點P在BC延長線上,PA是⊙O的切線,且∠B=35°.
(1)求∠PAC的度數.
(2)弦CE⊥AD交AB于點F,若AFAB=12,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當四邊形ACDE為菱形時,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△OAB三個頂點的坐標分別為O(0,0),A(3,0),B(2,3).
(1)tan∠OAB= ;
(2)在第一象限內畫出△OA'B',使△OA'B'與△OAB關于點O位似,相似比為2:1;
(3)在(2)的條件下,S△OAB:S四邊形AA′B′B= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角三角形中,點、點分別在軸、軸上,且. 將繞點順時針旋轉使斜邊落在軸上,得到第一個;將繞點順時針旋轉使邊落在軸上,得到第二個;將繞點順時針旋轉使邊落在軸上,得到第三個;……順次這樣做下去,得到的第2019個三角形落在軸上的邊的右側頂點所走的路程為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=30.
(1)求BE的長.
(2)若BC=15,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.
(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結果;
(Ⅱ)求兩次取出的小球標號相同的概率;
(Ⅲ)求兩次取出的小球標號的和大于6的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E,F,G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求證:△AEH≌△CGF.
(2)若∠EFG=90°.求證:四邊形EFGH是正方形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com