【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線(xiàn)的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點(diǎn)A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.
(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線(xiàn)段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線(xiàn)段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線(xiàn)段EF的長(zhǎng)度;若變化,說(shuō)明理由.
【答案】(1)①證明見(jiàn)解析;②AB=10; (2)在(1)的條件下,點(diǎn)M,N在移動(dòng)的過(guò)程中,線(xiàn)段EF的長(zhǎng)度不變,它的長(zhǎng)度恒為2.
【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得列方程,求出x,最后根據(jù)CD=AB=2OP即可求出邊CD的長(zhǎng);
(2)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB的長(zhǎng),最后代入EF=PB即可得出線(xiàn)段EF的長(zhǎng)度不變.
試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴=,∴CP=AD=4,設(shè)OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 : ,解得:x=5,∴CD=AB=AP=2OP=10,∴邊CD的長(zhǎng)為10;
(2)作MQ∥AN,交PB于點(diǎn)Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的條件下,當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線(xiàn)段EF的長(zhǎng)度不變,它的長(zhǎng)度為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點(diǎn)D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G.
①求證:BD⊥CF; ②當(dāng)AB=4,AD=時(shí),求線(xiàn)段BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△A'B'C'是由△ABC經(jīng)過(guò)平移得到的,它們的頂點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:
(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:
a= , b= ,c= ;
(2)在平面直角坐標(biāo)系中畫(huà)出△ABC及平移后的△A'B'C';(3)△A'B'C'的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象分別與x軸,y軸的正半軸交于點(diǎn)E、F,一次函數(shù)y=kx﹣4的圖象與直線(xiàn)EF交于點(diǎn)A(m,2),且交于x軸于點(diǎn)P,
(1)求m的值及點(diǎn)E、F的坐標(biāo);
(2)求△APE的面積;
(3)若B點(diǎn)是x軸上的動(dòng)點(diǎn),問(wèn)在直線(xiàn)EF上,是否存在點(diǎn)Q(Q與A不重合),使△BEQ與△APE全等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C表示某旅游景區(qū)三個(gè)纜車(chē)站的位置,線(xiàn)段AB,BC表示連接纜車(chē)站的鋼纜,已知A,B,C三點(diǎn)在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車(chē)線(xiàn)路,需要從A到C直線(xiàn)架設(shè)一條鋼纜,那么鋼纜AC的長(zhǎng)度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
【答案】鋼纜AC的長(zhǎng)度為1 000米.
【解析】試題分析:過(guò)點(diǎn)A作AE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過(guò)點(diǎn)B作BD⊥CC′于點(diǎn)D,分別求出AE、CE,利用勾股定理求解AC即可.
試題解析:過(guò)點(diǎn)A作AE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過(guò)點(diǎn)B作BD⊥CC′于點(diǎn)D,
則△AFB、△BDC、△AEC都是直角三角形,四邊形AA′B′F,BB′C′D和BFED都是矩形,
∴BF=BB′-B′F=BB′-AA′=310-110=200,
CD=CC′-C′D=CC′-BB′=710-310=400,
∵i1=1:2,i2=1:1,
∴AF=2BF=400,BD=CD=400,
又∵EF=BD=400,DE=BF=200,
∴AE=AF+EF=800,CE=CD+DE=600,
∴在Rt△AEC中,AC=(米).
答:鋼纜AC的長(zhǎng)度是1000米.
考點(diǎn):解直角三角形的應(yīng)用-坡度坡角問(wèn)題.
【題型】解答題
【結(jié)束】
24
【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過(guò)C點(diǎn)的切線(xiàn),垂足為D,AB的延長(zhǎng)線(xiàn)交直線(xiàn)CD于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長(zhǎng);
(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘核潛艇在海面DF下600米A點(diǎn)處測(cè)得俯角為30°正前方的海底C點(diǎn)處有黑匣子,繼續(xù)在同一深度直線(xiàn)航行2000米到B點(diǎn)處測(cè)得正前方C點(diǎn)處的俯角為45°.求海底C點(diǎn)處距離海面DF的深度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)“利用三角函數(shù)測(cè)高”后,某綜合實(shí)踐活動(dòng)小組實(shí)地測(cè)量了鳳凰山與中心廣場(chǎng)的相對(duì)高度AB,其測(cè)量步驟如下:
(1)在中心廣場(chǎng)測(cè)點(diǎn)C處安置測(cè)傾器,測(cè)得此時(shí)山頂A的仰角∠AFH=30°;
(2)在測(cè)點(diǎn)C與山腳B之間的D處安置測(cè)傾器(C、D與B在同一直線(xiàn)上,且C、D之間的距離可以直接測(cè)得),測(cè)得此時(shí)山頂上紅軍亭頂部E的仰角∠EGH=45°;
(3)測(cè)得測(cè)傾器的高度CF=DG=1.5米,并測(cè)得CD之間的距離為288米;
已知紅軍亭高度為12米,請(qǐng)根據(jù)測(cè)量數(shù)據(jù)求出鳳凰山與中心廣場(chǎng)的相對(duì)高度AB.(取1.732,結(jié)果保留整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com