【題目】如圖,直線y=-3x與雙曲線y=在第四象限內的部分相交于點A(a,-6),將這條直線向
上平移后與該雙曲線交于點M,且△AOM的面積為3.
(1)求k的值;
(2)求平移后得到的直線的函數(shù)表達式.
【答案】(1)k=-12; (2) y=-3x+3.
【解析】
試題(1)將點A代入直線解析式,從而得到A點坐標,再代入反比例函數(shù)解析式即可求得k;
(2)設平移后的直線交y軸于點B,連AB,根據(jù)平移可知OA//BM,又△AOM與△BOM有一條公共邊OM,從而可得S△OAM=S△OAB,從而可得點B的坐標,根據(jù)直線平行時k值不變,利用待定系數(shù)法即可進行求解.
試題解析:(1)當y=-6時,x=2,∴A(2,-6),
把x=2,y=-6代入y=得:k=-12;
(2)設平移后的直線交y軸于點B,連AB.
由平移知BM∥OA,∴S△OAM=S△OAB.
又∵S△OAM=3,∴S△OAB=3,即×OB×2=3,得OB=3,即B(0,3),
設平移后的直線的函數(shù)表達式為y=-3x+b,把x=0,y=3代入得b=3,
∴平移后的直線的函數(shù)表達式為y=-3x+3.
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y= 的圖象如圖,以下結論:
①m<0;
②在每個分支上y隨x的增大而增大;
③若點A(﹣1,a)、點B(2,b)在圖象上,則a<b;
④若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上.
其中正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在正方形ABCD的邊CD上,把△ADE繞點A順時針旋轉90°至△ABF位置,如果AB= ,∠EAD=30°,那么點E與點F之間的距離等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,BO,CO分別是∠ABC和∠ACB的平分線,過O點的直線分別交AB、AC于點D、E,且DE∥BC.若AB=6 cm,AC=8 cm,則△ADE的周長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= ,在下列結論中,不正確的是( )
A.圖象必經過點(1,2)
B.y隨x的增大而減少
C.圖象在第一、三象限
D.若x>1,則y<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(a,3),點P在坐標軸上,若使得△AOP是等腰三角形的點P恰有6個,則滿足條件的a值有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一批單價為20元的商品,若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,AC=AE,∠1=∠2,∠C=∠E.求證:BC=DE.
(2)如圖2,在△ABC中,AB=AC,D為BC中點,∠BAD=30°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com