【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑畫(huà)弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

【答案】B
【解析】解:根據(jù)作圖過(guò)程可知:PB=CP, ∵D為BC的中點(diǎn),
∴PD垂直平分BC,
∴①ED⊥BC正確;
∵∠ABC=90°,
∴PD∥AB,
∴E為AC的中點(diǎn),
∴EC=EA,
∵EB=EC,
∴②∠A=∠EBA正確;③EB平分∠AED錯(cuò)誤;④ED= AB正確,
故正確的有①②④,
故選:B.
根據(jù)作圖過(guò)程得到PB=PC,然后利用D為BC的中點(diǎn),得到PD垂直平分BC,從而利用垂直平分線的性質(zhì)對(duì)各選項(xiàng)進(jìn)行判斷即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,EAC上一點(diǎn),∠ABE=∠AEB,∠CDE=∠CED

求證:BEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC ,CEAB E,DFAB F,ACED,CE 是∠ACB 的平分線, 則圖中與∠FDB 相等的角(不包含∠FDB)的個(gè)數(shù)為(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B,

(1)求拋物線的解析式;
(2)求P在第一象限的拋物線上,P點(diǎn)的橫坐標(biāo)為t,過(guò)點(diǎn)P向x軸做垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為m,求m與t之間的函數(shù)關(guān)系式并求出m的最大值;
(3)在(2)的條件下,拋物線上一點(diǎn)D的縱坐標(biāo)為m的最大值,連接BD,在拋物線是否存在點(diǎn)E(不與點(diǎn)A,B,C重合)使得∠DBE=45°?若不存在.請(qǐng)說(shuō)明理由;若存在請(qǐng)求E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.

(1)如圖①,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB;

  

(2)如圖②,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DBE,連接AD,DC,∠DCB=30°,求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過(guò)點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果SBAF=4SDFO , 求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在中, , 平分于點(diǎn),點(diǎn)在線段上(點(diǎn)不與點(diǎn)、重合),且

)如圖,若,且,則__________, __________

)如圖,①求證:

②若,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于 x,y 的方程組的解滿足 x0,y0

(1)x= y= (用含 a 的代數(shù)式表示);

(2)求 a 的取值范圍;

(3)若 2x8y=2m,用含有 a 的代數(shù)式表示 m,并求 m 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案