【題目】如圖8,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線(xiàn).
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=,求△ACF的面積.
【答案】(1)見(jiàn)解析;(2)18
【解析】
(1)證明:連接BO,
方法一:∵ AB=AD=AO
∴△ODB是直角三角形
∴∠OBD=90° 即:BD⊥BO
∴BD是⊙O的切線(xiàn).
方法二:∵AB=AD, ∴∠D=∠ABD
∵AB=AO, ∴∠ABO=∠AOB
又∵在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°
∴∠OBD=90° 即:BD⊥BO
∴BD是⊙O的切線(xiàn)
(2)解:∵∠C=∠E,∠CAF=∠EBF
∴△ACF∽△BEF
∵AC是⊙O的直徑
∴∠ABC=90°
在Rt△BFA中,cos∠BFA=
∴
又∵=8
∴=18
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一臺(tái)實(shí)物投影儀,圖2是它的示意圖,折線(xiàn)B-A-O表示固定支架,AO垂直水平桌面OE于點(diǎn)O,點(diǎn)B為旋轉(zhuǎn)點(diǎn),BC可轉(zhuǎn)動(dòng),當(dāng)BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)時(shí),投影探頭CD始終垂直于水平桌面OE,經(jīng)測(cè)量:AO=6.4cm,CD=8cm,AB=40cm,BC=45cm,
圖1
(1)如圖2,∠ABC=70°,BC∥OE.
①填空:∠BAO= °
②投影探頭的端點(diǎn)D到桌面OE的距離
(2)如圖3,將(1)中的BC向下旋轉(zhuǎn),∠ABC=30°時(shí),求投影探頭的端點(diǎn)D到桌面OE的距離
(參考數(shù)據(jù):sin70≈0.94,cos70≈0.34,sin40°≈0.64,cos40°≈0.77)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,,,為格點(diǎn),為小正方形邊的中點(diǎn).
(1)的長(zhǎng)等于_________;
(2)點(diǎn),分別為線(xiàn)段,上的動(dòng)點(diǎn),當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線(xiàn)段,,并簡(jiǎn)要說(shuō)明點(diǎn)和點(diǎn)的位置是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線(xiàn)段OB上一動(dòng)點(diǎn),連接CD,將線(xiàn)段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段DE,過(guò)點(diǎn)E作直線(xiàn)l⊥x軸于H,過(guò)點(diǎn)C作CF⊥l于F.
(1)求拋物線(xiàn)解析式;
(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線(xiàn)上時(shí),求線(xiàn)段OD的長(zhǎng);
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線(xiàn)l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn)l,交直線(xiàn)BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線(xiàn)的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線(xiàn)上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)C作CF⊥直線(xiàn)l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線(xiàn)BC上方的拋物線(xiàn)上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問(wèn)△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑是2,點(diǎn)A,B在⊙O上,且∠AOB=90°,動(dòng)點(diǎn)C在⊙O上運(yùn)動(dòng)(不與A,B重合),點(diǎn)D為線(xiàn)段BC的中點(diǎn),連接AD,則線(xiàn)段AD的長(zhǎng)度最大值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3…和B1,B2,B3,…分別在直線(xiàn)y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果點(diǎn)A1(1,1),那么點(diǎn)A2019的縱坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線(xiàn)的函數(shù)解析式;
(2)點(diǎn)E為拋物線(xiàn)的頂點(diǎn),點(diǎn)C為拋物線(xiàn)與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問(wèn)的條件下,在直線(xiàn)DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)為A(s,t)(其中s≠0).
(1)若拋物線(xiàn)經(jīng)過(guò)(2,7)和(-3,37)兩點(diǎn),且s=1.
①求拋物線(xiàn)的解析式;
②若n>1,設(shè)點(diǎn)M(n,y1),N(n+1,y2)在拋物線(xiàn)上,比較y1,y2的大小關(guān)系,并說(shuō)明理由;
(2)若a=2,c=-2,直線(xiàn)y=2x+m與拋物線(xiàn)y=ax2+bx+c的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;
(3)若點(diǎn)A在拋物線(xiàn)y=上,且2≤s<3時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com