【題目】近年來(lái),德強(qiáng)學(xué)校初中部中考屢創(chuàng)佳績(jī),捷報(bào)頻傳.為了吸納更多的優(yōu)質(zhì)生源,學(xué)校決定要新建一棟層的教學(xué)大樓,每層樓有間教室,進(jìn)出這棟大樓共有道門,其中兩道正門大小相同,兩道側(cè)門大小相同,進(jìn)樓前為了保證學(xué)生安全,對(duì)道門進(jìn)行了測(cè)試:正常情況下,當(dāng)同時(shí)開(kāi)啟一道正門和兩道側(cè)門時(shí),分鐘可以通過(guò)名學(xué)生;當(dāng)同時(shí)開(kāi)啟一道正門和一道側(cè)門時(shí)分鐘可以通過(guò)名學(xué)生.

1)正常情況下,平均每分鐘一道正門和一道側(cè)門各可以通過(guò)多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率將降低,安全檢查規(guī)定,在緊急情況下全大樓的學(xué)生應(yīng)在分鐘內(nèi)通過(guò)這道門安全撤離.如果這棟教學(xué)樓每班預(yù)計(jì)招收45名學(xué)生,那么建造的這道門是否符合安全規(guī)定?請(qǐng)說(shuō)明理由.

【答案】1)平均每分鐘一道正門可以通過(guò)120名學(xué)生,平均每分鐘一道側(cè)門可以通過(guò)80名學(xué)生.(2)符合安全規(guī)定

【解析】

1)本題的兩個(gè)等量關(guān)系是:一道正門2分通過(guò)的人數(shù)+二道側(cè)門2分通過(guò)的人數(shù)=560人.
一道正門4分通過(guò)的人數(shù)+一道正門4分通過(guò)的人數(shù)=800人.根據(jù)這兩個(gè)等量關(guān)系可得出方程組,求出解.
2)可根據(jù)(1)中求出的平均每分鐘一道正門和一道側(cè)門的通行量,算出8道門全部打開(kāi)5分鐘通過(guò)的人數(shù),乘20%后同總?cè)藬?shù)進(jìn)行比較,然后看看是否符合要求.

1)由已知可設(shè)一道正門每分可通過(guò)x名,一道側(cè)門每分可通過(guò)人;
由題意得:

2x+4560
解得:x120

=80
答:平均每分鐘一道正門可以通過(guò)120名學(xué)生,平均每分鐘一道側(cè)門可以通過(guò)80名學(xué)生.
2)假設(shè)建造4道門符合安全, 緊急情況下4道門全部開(kāi)放 ,則:學(xué)?偣灿袑W(xué)生:45×8×4=1440
5分鐘可以通過(guò)學(xué)生:120×2+80×2=2000

效率為20%,則通過(guò)學(xué)生為:2000×1-20%=1600

因?yàn)?/span>16001440 所以建造4道門,可以讓學(xué)生在5分鐘內(nèi)撤離,符合安全規(guī)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以點(diǎn)O為圓心,OB為半徑作圓,過(guò)點(diǎn)C作CD∥AB交⊙O于點(diǎn)D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)試判斷四邊形BOCD的形狀,并證明你的判斷;

(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)分別為48的兩個(gè)正方形ABCDCEFG并排放在一起,連結(jié)BD并延長(zhǎng)交EG于點(diǎn)T,交FG于點(diǎn)P,則GT的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)愛(ài)因斯坦的相對(duì)論可知,任何物體的運(yùn)動(dòng)速度不能超過(guò)光速(3×105km/s),因?yàn)橐粋(gè)物體達(dá)到光速需要無(wú)窮多的能量,并且時(shí)光會(huì)倒流,這在現(xiàn)實(shí)中是不可能的.但我們可讓一個(gè)虛擬物超光速運(yùn)動(dòng),例如:直線l,m表示兩條木棒相交成的銳角的度數(shù)為10°,它們分別以與自身垂直的方向向兩側(cè)平移時(shí),它們的交點(diǎn)A也隨著移動(dòng)(如圖箭頭所示),如果兩條直線的移動(dòng)速度都是光速的0.2倍,則交點(diǎn)A的移動(dòng)速度是光速的_____倍.(結(jié)果保留兩個(gè)有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】篝火晚會(huì)前夕,德強(qiáng)學(xué)校附近一超市從廠家購(gòu)進(jìn)了甲、乙兩種發(fā)光道具,甲種道具的每件進(jìn)價(jià)比乙種道具的每件進(jìn)價(jià)少.若購(gòu)進(jìn)甲種道具件,乙種道具件,需要.

1)求甲、乙兩種道具的每件進(jìn)價(jià)分別是多少元?

2)若該超市從廠家購(gòu)進(jìn)了甲乙兩種道具共件,所用資金恰好為.在銷售時(shí),甲種

道具的每件售價(jià)為元,要使得這件道具所獲利潤(rùn)率為,乙道具的每件售價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C.

(1)求直線AC的解析式;

(2)點(diǎn)P是直線AC上方拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PDAC,垂足為D,當(dāng)線段PD的長(zhǎng)度最大時(shí),點(diǎn)Q從點(diǎn)P出發(fā),先以每秒1個(gè)單位的速度沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到y(tǒng)軸上的點(diǎn)M處,再沿MC以每秒3個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)C停止,當(dāng)點(diǎn)Q在整個(gè)運(yùn)動(dòng)中所用時(shí)間t最少時(shí),求點(diǎn)M的坐標(biāo);

(3)如圖2,將BOC沿直線BC平移,平移后B,O,C三點(diǎn)的對(duì)應(yīng)點(diǎn)分別是B′,O′,C′,點(diǎn)S是坐標(biāo)平面內(nèi)一點(diǎn),若以A,C,O′,S為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,AD平分∠BACBC于點(diǎn)D,在線段AD上任到一點(diǎn)P(點(diǎn)A除外),過(guò)點(diǎn)PEFAB,分別交AC、BC于點(diǎn)EF,作PQAC,交AB于點(diǎn)Q,連接QEAD相交于點(diǎn)G

1)求證:四邊形AQPE是菱形.

2)四邊形EQBF是平行四邊形嗎?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

3)直接寫(xiě)出P點(diǎn)在EF的何處位置時(shí),菱形AQPE的面積為四邊形EQBF面積的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=x0)的圖象上有一點(diǎn)Am,4),過(guò)點(diǎn)AABx軸于點(diǎn)B,將點(diǎn)B向右平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,過(guò)點(diǎn)Cy軸的平行線交反比例函數(shù)的圖象于點(diǎn)D

(1)點(diǎn)D的橫坐標(biāo)為_____(用戶含m的代數(shù)式表示).

2)當(dāng)CD=時(shí),求反比例函數(shù)所對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形紙片ABCD的邊長(zhǎng)為2,將正方形紙片折疊,使頂點(diǎn)A落在邊CD上的點(diǎn)P處(點(diǎn)PC、D不重合),折痕為EF,折疊后AB邊落在PQ的位置,PQBC交于點(diǎn)G.

(1)觀察操作結(jié)果,找到一個(gè)與EDP相似的三角形,并證明你的結(jié)論;

(2)當(dāng)點(diǎn)P位于CD中點(diǎn)時(shí),你找到的三角形與EDP周長(zhǎng)的比是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案