【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角為,此時教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測得教學(xué)樓頂端G的仰角為,點A、B、C三點在同一水平線上.
(1)求古樹BH的高;
(2)求教學(xué)樓CG的高.
【答案】(1)8.5米;(2)米
【解析】
(1)利用等腰直角三角形的性質(zhì)即可解決問題;
(2)作HJ⊥CG于G.則△HJG是等腰直角三角形,四邊形EFJH是矩形,設(shè)GJ=EF=HJ=x.構(gòu)建方程即可解決問題;
(1)由題意:四邊形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,
在Rt△DEH中,∵∠HDE=45°,
∴HE=DE=7米,
∴BH=EH+BE=8.5米,
所以古樹BH的高為8.5米;
(2)作HJ⊥CG于J.易證△HJG是等腰直角三角形,四邊形EFJH是矩形,
∴JF=HE =7米,
設(shè)HJ =x.則GJ=EF=HJ=x,
在Rt△EFG中,tan60°=,
即,
∴,
∴,
∴(米);
所以教學(xué)樓CG的高為米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣實施新課程改革后,學(xué)習(xí)的自主字習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖下列問題:
(1)本次調(diào)查中,張老師一共調(diào)査了 名同學(xué),其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)迸行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、每個轉(zhuǎn)盤被分成如圖所示的幾個扇形、游戲者同時轉(zhuǎn)動兩個轉(zhuǎn)盤,如果一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一轉(zhuǎn)盤轉(zhuǎn)出了藍(lán)色,游戲者就配成了紫色下列說法正確的是( 。
A. 兩個轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色的概率一樣大
B. 如果A轉(zhuǎn)盤轉(zhuǎn)出了藍(lán)色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色的可能性變小了
C. 先轉(zhuǎn)動A 轉(zhuǎn)盤再轉(zhuǎn)動B 轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率不同
D. 游戲者配成紫色的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖像與軸交于、兩點(點在點的右側(cè)),與軸交于點,點為拋物線的頂點,且.
(1)點為直線上方拋物線上一點,求四邊形的面積的最大值;點、分別為射線、上的動點,當(dāng)四邊形面積取得最大值時,求當(dāng)線段的值為最小值時點的坐標(biāo).
(2)把繞點旋轉(zhuǎn)一定角度后得到,且點恰好在線段上,拋物線上的點與點關(guān)于拋物線對稱軸對稱,作,把沿直線平移后得到,在變換過程中是否存在為等腰三角形,若存在,直接寫出此時的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是反比例函數(shù)與在x軸上方的圖象,點C是y軸正半軸上的一點,過點C作軸分別交這兩個圖象與點A和點B,P和Q在x軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于( )
A.20B.15C.10D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當(dāng)a為何值時,方程僅有一個根?求出此時a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個頂點A、B、D在⊙O上,且CD與⊙O相切.
(1)求證:BC與⊙O相切;
(2)求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計的“過圓外一點作這個圓的兩條切線”的尺規(guī)作圖過程.
已知:⊙O及⊙O外一點P.
求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B.
作法:如圖,
①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點M,N;
②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;
③作直線PA和直線PB.
所以直線PA和PB就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OP是⊙Q的直徑,
∴ ∠OAP=∠OBP=________°( )(填推理的依據(jù)).
∴PA⊥OA,PB⊥OB.
∵OA,OB為⊙O的半徑,
∴PA,PB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF垂直平分矩形ABCD的對角線AC,與AB、CD分別交于點E、F,連接AF.已知AC=4,設(shè)AB=x,AF=y,則y關(guān)于x的函數(shù)關(guān)系用圖象大致可以表示為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com