【題目】下列說法正確的個數(shù)有(

①垂線段最短;

②一對內(nèi)錯角的角平分線互相平行;

③平面內(nèi)的n條直線最多有個交點(diǎn);

④若,則;

⑤平行于同一直線的兩條直線互相平行,垂直于同一直線的兩條直線也互相平行.

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)直線外一點(diǎn)到直線上所有連線中垂線段最短、平行線的性質(zhì)與判定、平面內(nèi)直線的交點(diǎn)個數(shù)等逐一分析即可.

①直線外一點(diǎn)到直線上的所有連線中,垂線段最短,簡述為“垂線段最短”,原說法正確;

②一對平行直線的內(nèi)錯角的角平分線互相平行,原說法錯誤;

③平面內(nèi)的n條直線最多有個交點(diǎn),原說法正確;

④當(dāng)時(shí),,則;當(dāng)時(shí),根據(jù)等比性質(zhì)可得:,故,原說法錯誤;

⑤平行于同一直線的兩條直線互相平行,但是在同一平面內(nèi),垂直于同一直線的兩條直線才互相平行,故原說法錯誤;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示的是汽車在行駛的過程中,速度隨時(shí)間變化而變化的情況.

(1)汽車從出發(fā)到最后停止共經(jīng)過了多少時(shí)間?它的最高時(shí)速是多少?

(2)汽車在那些時(shí)間段保持勻速行駛?時(shí)速分別是多少?

(3)出發(fā)后8分到10分之間可能發(fā)生了什么情況?

(4)用自己的語言大致描述這輛汽車的行駛情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在等邊△ABC的邊BC上,BE6,射線CDBC于點(diǎn)C,點(diǎn)P是射線CD上一動點(diǎn),點(diǎn)F是線段AB上一動點(diǎn),當(dāng)EP+PF的值最小時(shí),BF7,則AC______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將長方形ABCD折疊,使BC落在對角線BD上,折痕為BE,點(diǎn)C落在點(diǎn)C′處,若∠ADB=48°,則∠DBE的度數(shù)為_______.

(2)小明手中有一張長方形紙片ABCD,AB=12,AD=27.

(畫一畫)

如圖2,點(diǎn)E在這張長方形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點(diǎn)MN分別在邊AD,BC),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,).

(算一算)

如圖3:點(diǎn)F在這張長方形紙片的邊BC上,將紙片折疊,使FB落在線段FD上,折痕為GF,點(diǎn)A、B分別落在點(diǎn)E、H處,若DCF的周長等于48,求DHAG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的xy的部分對應(yīng)值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

給出了結(jié)論:

(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;

(2)當(dāng)﹣<x<2時(shí),y<0;

(3)a﹣b+c=0;

(4)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點(diǎn),且它們分別在y軸兩側(cè)

則其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MNAC于點(diǎn)D,交AB于點(diǎn)E

1)求證:△ABD是等腰三角形;

2)若∠A=40°,求∠DBC的度數(shù);

3)若AE=6,△CBD的周長為20,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP=1,過PPP1OP,得OP1=;再過P1P1P2OP1P1P2=1,得OP2=;又過P2P2P3OP2P2P3=1,得OP3=2;…依次法繼續(xù)作下去,S1,S2,S3…分別表示各個三角形的面積,那么S12+S22+S32++S92的值是( 。

A.B.C.D.55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB

1)求∠ACE的度數(shù).

2)若CDAB于點(diǎn)D,∠CDF=75°,求證:△CFD是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,AB=AC=10 cm,BC=8cm,點(diǎn)DAB的中點(diǎn),點(diǎn)EAC上,AE=6 cm,點(diǎn)PBC上以1 cm/s速度由B點(diǎn)向C點(diǎn)運(yùn)動,點(diǎn)QAC上由A點(diǎn)向E點(diǎn)運(yùn)動,兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.

1)在運(yùn)動過程中,若點(diǎn)Q速度為2 cm/s,則能否形成以為頂角的等腰三角形?若可以,請求出運(yùn)動時(shí)間t, 若不可以,請說明理由;

2)當(dāng)點(diǎn)Q速度為多少時(shí),能夠使 全等?

查看答案和解析>>

同步練習(xí)冊答案