的長度約為 cm.">
【題目】如圖1所示,點E在弦AB所對的優(yōu)弧上,且為半圓,C是上的動點,連接CA、CB,已知AB=4cm,設(shè)B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 0.78 | 1.76 | 2.85 | 3.98 | 4.95 | 4.47 |
y2/cm | 4 | 4.69 | 5.26 | 5.96 | 5.94 | 4.47 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:
①連接BE,則BE的長約為 cm.
②當以A、B、C為頂點組成的三角形是直角三角形時,BCspan>的長度約為 cm.
【答案】(1)詳見解析;(2)詳見解析;(3)①6;②6或4.47.
【解析】
(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
(2)描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象即可;
(3)①∵BC=6時,CD=AC=4.47,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;
②分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;
當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.47.
(1)由表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:
∵CD⊥AB,
∴(cm),
∴AD=AB+BD=4+0.9367=4.9367(cm),
∴(cm);
補充完整如下表:
(2)描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象如圖2所示:
(3)①∵BC=6cm時,CD=AC=4.47cm,即點C與點E重合,CD與AC重合,BC為直徑,
∴BE=BC=6cm,
故答案為:6;
②以A、B、C為頂點組成的三角形是直角三角形時,分兩種情況:
當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6cm;
當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6cm,由圖象可得:BC=4.47cm;
綜上所述:BC的長度約為6cm或4.47cm;
故答案為:6或4.47.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某科技物展覽大廳有A、B兩個入口,C、D、E三個出口.小昀任選一個入口進入展覽大廳, 參觀結(jié)束后任選一個出口離開.
(1)若小昀已進入展覽大廳,求他選擇從出口C離開的概率.
(2)求小昀選擇從入口A進入,從出口E離開的概率.(請用列表或畫樹狀圖求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佩佩賓館重新裝修后,有間房可供游客居住,經(jīng)市場調(diào)查發(fā)現(xiàn),每間房每天的定價為元,房間會全部住滿,當每間房每天的定價每增加元時,就會有一間房空閑,如果游客居住房間,賓館需對每間房每天支出元的各項費用.設(shè)每間房每天的定價增加元,賓館獲利為元.
(1)求與的函數(shù)關(guān)系式(不用寫出自變量的取值范圍) ;
(2)物價部門規(guī)定,春節(jié)期間客房定價不能高于平時定價的倍,此時每間房價為多少元時賓館可獲利元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫潤有度,為愛加溫.近年來設(shè)計精巧、物美價廉的暖風(fēng)機逐漸成為人們冬天必備的“取暖神器”,今年11月下旬某商場計劃購進、兩種型號的暖風(fēng)機共900臺,每臺型號暖風(fēng)機售價為600元,每臺型號暖風(fēng)機售價為900元.
(1)若要使得、兩種型號暖風(fēng)機的銷售額不低于69萬元,則至多購進多少臺型號暖風(fēng)機?
(2)由于質(zhì)量超群、品質(zhì)卓越,11月下旬購進的、兩種型號的暖風(fēng)機全部售完.該商場在12上旬又購進了、兩種型號的暖風(fēng)機若干臺,并且進行“雙12”促銷活動,每臺型號暖風(fēng)機的售價比其11月下旬的售價優(yōu)惠,型號暖風(fēng)機12月上旬的銷售量比其在(1)問條件下的最高購進量增加,每臺型號暖風(fēng)機的售價比其11月下旬的售價優(yōu)惠,型號暖風(fēng)機12月上旬的銷售量比其在(1)問條件下的最低購進量增加,、兩種型號的暖風(fēng)機在12月上旬的銷售額比(1)問中最低銷售額增加了,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)中的和滿足下表:
] |
(1)請直接寫出m的值為_________.
(2)求出這個二次函數(shù)的解析式.
(3)當時,則y的取值范圍為______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,是等腰直角三角形,,于點,連分別交,于點,,過點作交于點,則下列結(jié)論:
①;②;③;④;⑤..其中正確結(jié)論的個數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.
(1)直接寫出甲投放的垃圾恰好是A類的概率;
(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E.F分別在邊CD,AD上,BE與CF交于點G.若BC=4,DE=AF=1,則GF的長為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸分別交于,兩點,與y軸交于點C.
(1)求拋物線的表達式及頂點D的坐標;
(2)點F是線段AD上一個動點.
①如圖1,設(shè),當k為何值時,.
②如圖2,以A,F,O為頂點的三角形是否與相似?若相似,求出點F的坐標;若不相似,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com