【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到1米,參考數(shù)據(jù)≈1.4,≈1.7)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸的負(fù)半軸上,B點(diǎn)坐標(biāo)為(6,0),點(diǎn)C在y軸的負(fù)半軸上,且OB=OC,拋物線y=x2+bx+c經(jīng)過A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)關(guān)系式和點(diǎn)A的坐標(biāo);
(2)點(diǎn)D的坐標(biāo)為(0,-2),F為該二次函數(shù)圖像上的動點(diǎn),連接BD、BF,以BD、BF為鄰邊作平行四邊形BDEF,
①若點(diǎn)F為該二次函數(shù)在第四象限圖像上的動點(diǎn),設(shè)平行四邊形BDEF的面積為S。求S的最大值。
②在點(diǎn)F的運(yùn)動過程中,當(dāng)點(diǎn)E落在一次函數(shù)y=x+7上時(shí),求點(diǎn)F的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),若∠BAC=∠CAM,過點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若直線l與AB的延長線相交于點(diǎn)E,⊙O的半徑為3,并且∠CAB=30°,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠ACB=900,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過點(diǎn)B、D.
(1)求點(diǎn)A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動點(diǎn),連結(jié)PQ并延長交BC于點(diǎn)E,連結(jié)BQ并延長交AC于點(diǎn)F,試證明:FC(AC+BC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對籃球、足球、排球、羽毛球、乒乓球這五種球類運(yùn)動的喜愛情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計(jì)整理并繪制了以下兩幅不完整的統(tǒng)計(jì)圖:
請根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)共抽取_____名學(xué)生進(jìn)行問卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,求出扇形統(tǒng)計(jì)圖中“籃球”所對應(yīng)的圓心角的度數(shù);
(3)該校共有2500名學(xué)生,請估計(jì)全校學(xué)生喜歡足球運(yùn)動的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個不同的二次函數(shù)的圖象相交,那么它們的交點(diǎn)最多有( )
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合運(yùn)用
(1)某種花粉顆粒的半徑為25μm,多少顆這樣的花粉顆粒緊密排成一列的長度為1米?(1μm=10-6 m)
(2).已知(a+b)2=7, (a-b)2=3,求:①a2+b2; ②ab的值.
(3)已知10m=4,10n=5.求103m-2n+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(﹣2,3)所在的象限是( 。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場300名職工耕種51公頃土地,計(jì)劃種植水稻,棉花和蔬菜,已知種植農(nóng)作物每公頃所需的勞動力人數(shù)及投入的設(shè)備資金如下表:
農(nóng)作物品種 | 每公頃需勞動力 | 每公頃需投入資金 |
水稻 | 4人 | 1萬元 |
棉花 | 8人 | 1萬元 |
蔬菜 | 5人 | 2萬元 |
已知該農(nóng)場計(jì)劃在設(shè)備上投入67萬元,應(yīng)該怎樣安排三種農(nóng)作物的種植面積,才能使所有的職工都有工作,而且投入的資金正好夠用?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com