【題目】(1)分解因式: (2)分解因式: 9a2(x—y)+4b2(y—x)
(3)分解因式:(x2+y2)2-4x2y2 (4)利用分解因式計(jì)算求值:2662-2342
(5)利用分解因式計(jì)算求值:已知x-3y=-1,xy=2,求x3y-6x2y2+9xy3的值.
【答案】(1)2ab(ab-2a+4b)(2)(x—y)(3a+2b)(3a—2b)(3) (x+y)2(x-y)2(4)16000(5)2.
【解析】(1)直接提公因式2ab即可分解;
(2)首先提公因式(x-y),然后利用平方差公式分解;
(3)利用平方差方公式即可分解;
(4)直接利用平方差公式分解,再計(jì)算即可;
(5)首先提公因式xy,然后利用完全平方公式分解后,把x-3y=-1,xy=2代入即可求值.
(1)原式=2ab(ab-2a+4b)
(2)原式=(x—y)(3a+2b)(3a—2b)
(3)原式=(x+y)2(x-y)2
(4)原式=(266+234)(266-234)=16000
(5)原式=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)O按如圖方式疊放在一起.
(1)如圖(1)若∠BOD=35°,求∠AOC的度數(shù),若∠AOC=135°,求∠BOD的度數(shù)。
(2)如圖(2)若∠AOC=150°,求∠BOD的度數(shù)
(3)猜想∠AOC與∠BOD的數(shù)量關(guān)系,并結(jié)合圖(1)說(shuō)明理由.
(4)三角尺AOB不動(dòng),將三角尺COD的OD邊與OA邊重合,然后繞點(diǎn)O按順時(shí)針或逆時(shí)針方向任意轉(zhuǎn)動(dòng)一個(gè)角度,當(dāng)∠AOD(0°<∠AOD<90°)等于多少度時(shí),這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD角度所有可能的值,不用說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)的圖像經(jīng)過點(diǎn).
(1)求k的值,并判斷點(diǎn)是否在該反比例函數(shù)的圖像上;
(2)該反比例函數(shù)圖像在第______象限,在每個(gè)象限內(nèi),y隨x的增大而_______.
(3)當(dāng)時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長(zhǎng)度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,過點(diǎn)E作EH⊥ED交MF的延長(zhǎng)線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a、b互為相反數(shù),b、C互為倒數(shù),并且m的立方等于它本身
(1)求+ac值;
(2)若a>1,且m<0,S=|2a-3b|-2|b-m|-|b+|,求2a-S的值.
(3)若m≠0,試討論:x為有理數(shù)時(shí)|x+m|-|x-m|是否存在最大值?若存在,求出這個(gè)最大值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點(diǎn)B的坐標(biāo);
(2)在點(diǎn)P的運(yùn)動(dòng)過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說(shuō)明理由.
(3)連接OQ,當(dāng)OQ∥AB時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)O是BD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長(zhǎng)交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B分別在反比例函數(shù)y=(x>0)、y=(x>0)的圖象上,且∠AOB=90°,∠B=30°,求y=的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com