【題目】某汽車專賣店銷售兩種型號(hào)的新能源汽車,上周售出1型車和3型車,銷售額為96萬元:本周售出2型車和1型車,銷售額為62萬元.

(1)求每輛車型車和型車的售價(jià)各多少萬元?

(2)甲公司擬向該商店購買、兩種型號(hào)的新能源汽車共6輛,購車總費(fèi)用不超過140萬元,則至少購進(jìn)型車多少輛?

【答案】(1) 每輛型車的售價(jià)為18萬元,每輛型車的售價(jià)為26萬元;(2)至少購進(jìn)A型車2輛.

【解析】

1)設(shè)每輛型車的售價(jià)為x萬元,每輛型車的售價(jià)為y萬元,根據(jù)題意,列出二元一次方程組即可求出結(jié)論;

2)設(shè)購進(jìn)型車a輛,則購進(jìn)型車(6-a)輛,根據(jù)題意列出一元一次不等式即可求出結(jié)論.

解:(1)設(shè)每輛型車的售價(jià)為x萬元,每輛型車的售價(jià)為y萬元

由題意可得

解得:

答:每輛型車的售價(jià)為18萬元,每輛型車的售價(jià)為26萬元

2)設(shè)購進(jìn)型車a輛,則購進(jìn)型車(6-a)輛,

由題意可得18a266-a)≤140

解得:a2

a的最小值為2

答:至少購進(jìn)型車2輛.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)xy定義一種新運(yùn)算T,規(guī)定:Tx,y)=(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T0,1)=b,已知T1,1)=2.5,T4,﹣2)=4

1)求a,b的值;

2)若關(guān)于m的不等式組恰好有2個(gè)整數(shù)解,求實(shí)數(shù)P的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l∥AB,l與AB之間的距離為2.C、D是直線l上兩個(gè)動(dòng)點(diǎn)(點(diǎn)C在D點(diǎn)的左側(cè)),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABCD的面積始終為10;②當(dāng)A′與D重合時(shí),四邊形ABDC是菱形;③當(dāng)A′與D不重合時(shí),連接A′、D,則∠CA′D+∠BCA′=180°;④若以A′、C、B、D為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( 。

A. ①②④ B. ①③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,建立如圖所示的平面直角坐標(biāo)系.

1)請(qǐng)根據(jù)如圖所示的平面直角坐標(biāo)系,寫出△ABC各點(diǎn)的坐標(biāo),并求出△ABC的面積.

2)把△ABC平移到△A1B1C1,使點(diǎn)B1與原點(diǎn)O重合,按要求畫出△A1B1C1,并寫出平移過程.

3)已知P是△ABC內(nèi)有一點(diǎn),平移至△A1B1C1后,P點(diǎn)對(duì)應(yīng)點(diǎn)的坐標(biāo)為P1 (a,b),試寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動(dòng)陽光體育運(yùn)動(dòng)的廣泛開展,引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,走到陽光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年的隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了統(tǒng)計(jì)圖A和圖B,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

1)本次隨機(jī)抽樣的學(xué)生數(shù)是多少?A值是多少?

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購買200雙運(yùn)動(dòng)鞋,建議購買35號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)的延長線上,,交于點(diǎn)

(1)如圖1,請(qǐng)寫出的數(shù)量關(guān)系;

(2)如圖2,若平分,,求證:;

(3)(2)的條件下,如圖3,連接,若中點(diǎn),中點(diǎn),,,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x+k和雙曲線y= (k為正整數(shù))交于A,B兩點(diǎn).

(1)當(dāng)k=1時(shí),求A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)k=2時(shí),求△AOB的面積;
(3)當(dāng)k=1時(shí),△OAB的面積記為S1 , 當(dāng)k=2時(shí),△OAB的面積記為S2 , …,依此類推,當(dāng)k=n時(shí),△OAB的面積記為Sn , 若S1+S2+…+Sn= ,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以點(diǎn)A為圓心在梯形內(nèi)畫出一個(gè)最大的扇形,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題有(

①直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短;

②三角形的一個(gè)外角大于任何一個(gè)內(nèi)角;

③如果∠1和∠2是對(duì)頂角,那么;

④如果一條直線和兩條直線中的一條垂直,那么這條直線也和另一條垂直.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案