【題目】已知:如圖,AB是⊙O的直徑,AB=4,點F,C是⊙O上兩點,連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過點C作CD⊥AF交AF的延長線于點D,垂足為點D.
(1)求扇形OBC的面積(結(jié)果保留π);
(2)求證:CD是⊙O的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC=10cm,BC=12cm,D為BC上一點,連接AD,E為AD上一點,連接BE,若∠ABE=∠BAE═∠BAC,則DE的長為( )
A.cmB.cmC.cmD.1cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點E,與線段AD交于點F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,分別過點B、C兩點作過點A的直線的垂線,垂足為M、N.
(1)如圖1,當(dāng)M、N兩點在直線BC的同側(cè)時,求證:BM+CN=MN;
(2)如圖2,當(dāng)M、N兩點在直線BC的兩側(cè)時,BM、CN、MN三條線段的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB∥CD,EG平分∠AEF,EH⊥EG,EH∥GF,則下列結(jié)論:①EG⊥GF;②EH平分∠BEF;③FG平分∠EFC;④∠EHF=∠FEH+∠HFD;其中正確的結(jié)論個數(shù)是( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD,直線EF分別交AB、CD于A、C,CM是∠ACD的平分線,CM交AB于H,過A作AG⊥AC交CM于G.
(1)如圖1,點G在CH的延長線上時,
①若∠GAB=36°,則∠MCD=______.
②猜想:∠GAB與∠MCD之間的數(shù)量關(guān)系是______.
(2)如圖2,點G在CH上時,(1)②猜想的∠GAB與∠MCD之間的數(shù)量關(guān)系還成立嗎?如果成立,請給出證明;如果不成立,請寫出∠GAB與∠MCD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.Rt△ABC內(nèi)接于⊙O,BC為直徑,AB=4,AC=3,D是弧AB 的中點,CD與AB的交點為E,則 等于( )
A. 4 B. 3.5 C. 3 D. 2.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-x2+2x+3與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線BC的表達(dá)式;
(2)拋物線的對稱軸上存在點P,使∠APB=∠ABC,利用圖①求點P的坐標(biāo);
(3)點Q在y軸右側(cè)的拋物線上,利用圖②比較∠OCQ與∠OCA的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC和等邊△ECD的邊長相等,BC與CD兩邊在同一直線上,請根據(jù)如下要求,使用無刻度的直尺,通過連線的方式畫圖.
(1)在圖1中畫一個直角三角形; (2)在圖2中畫出∠ACE的平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com