如圖.點(diǎn)A、B、C、D在⊙O上,AC⊥BD于點(diǎn)E,過(guò)點(diǎn)O作OF⊥BC于F,求證:

(1)△AEB∽△OFC;
(2)AD=2FO.
證明:(1)如圖,連接OB,則∠BAE=∠BOC,

∵OF⊥BC,∴∠COF=∠BOC。
∴∠BAE=∠COF。
又∵AC⊥BD,OF⊥BC,∴∠OFC=∠AEB=90°。
∴△AEB∽△OFC。
(2)∵△AEB∽△OFC,∴,即。
由圓周角定理,∠D=∠BCE,∠DAE=∠CBE,
∴△ADE∽△BCE!
。
∵OF⊥BC,∴BC=2CF。
∴AD =2FO。

試題分析:(1)連接OB,根據(jù)圓周角定理可得∠BAE=∠BOC,根據(jù)垂徑定理可得∠COF=∠BOC,再根據(jù)垂直的定義可得∠OFC=∠AEB=90°,然后根據(jù)兩角對(duì)應(yīng)相等,兩三角形相似證明即可;
(2)根據(jù)相似三角形對(duì)應(yīng)邊成比例可得,再根據(jù)圓周角定理求出∠D=∠BCE,∠DAE=∠CBE,然后求出△ADE和△BCE相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得,從而得到,再根據(jù)垂徑定理BC=2FC,代入整理即可得證!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法①平分弦的直徑垂直于弦;②三點(diǎn)確定一個(gè)圓;③相等的圓心角所對(duì)的弧相等;④垂直于半徑的直線是圓的切線;⑤三角形的內(nèi)心到三條邊的距離相等。其中不正確的有( )個(gè)。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知⊙O的半徑是6,點(diǎn)O到直線l的距離為5,則直線l與⊙O的位置關(guān)系是
A.相離B.相切C.相交D.無(wú)法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB,CD是⊙O的直徑,點(diǎn)E在AB延長(zhǎng)線上,F(xiàn)E⊥AB,BE=EF=2,F(xiàn)E的延長(zhǎng)線交CD延長(zhǎng)線于點(diǎn)G,DG=GE=3,連接FD.

(1)求⊙O的半徑;
(2)求證:DF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用一個(gè)圓心角為90°半徑為32cm的扇形作為一個(gè)圓錐的側(cè)面(接縫處不重疊),則這個(gè)圓錐的底面圓的半徑為   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,PO是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA="24" cm,則⊙O的周長(zhǎng)為【   】
A. B. C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若兩圓的半徑分別是2和3,圓心距是5,則這兩圓的位置關(guān)系是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,以AB為直徑的半圓O交AC于點(diǎn)D,且點(diǎn)D為AC的中點(diǎn),DE⊥BC于點(diǎn)E,AE交半圓O于點(diǎn)F,BF的延長(zhǎng)線交DE于點(diǎn)G.

(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖在⊙O中,弦AB=8,OC⊥AB,垂足為C,且OC=3,則⊙O的半徑
A.5B.10C.8D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案