如圖,在平行四邊形ABCD中,CE=AF,求證:四邊形BEDF是平行四邊形。
證明:在平行四邊形ABCD中
AB∥DC,AB=DC                      
又CE=AF
∴DE=BF                             
而DE∥BF
∴四邊形BEDF是平行四邊形
由平行四邊形的性質(zhì)可得:AB與CD平行且相等;而CE=AF,可得DE與BF平行且相等,由此可證得四邊形BEDF是平行四邊形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AD⊥BC于D,點(diǎn)D,E,F(xiàn)分別是BC,AB,AC的中點(diǎn).求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,DE∥OC,CE∥OD,試判斷四邊形OCDE是何特殊四邊形,并加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等腰梯形ABCD的中位線EF的長為5,腰AD的長為3,則這個(gè)等腰梯形的周長為          。         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是
A.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形;
B.對(duì)角線互相垂直的四邊形是菱形;
C.對(duì)角線相等的四邊形是矩形;
D.一組鄰邊相等的矩形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在四邊形ABCD中,AB∥CD,∠D=900,∠DCA=300,CA平分∠DCB,AD=4cm,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD是正方形,G是BC上的一點(diǎn),于E,于F。猜想DE、EF、FB之間的數(shù)量關(guān)系,并對(duì)你的猜想加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平行四邊形ABCD的周長是28㎝,三角形ABC的周長是22㎝,則AC的長為
A.6㎝B.12㎝
C.4㎝D.8㎝

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)C在x的正半軸上,點(diǎn)A在y軸的正半軸上,且OA=7,OC=18,現(xiàn)將點(diǎn)C向上平移7個(gè)單位長度再向左平移4單位長度,得到對(duì)應(yīng)點(diǎn)B。

(1)求點(diǎn)B的坐標(biāo)及四邊形ABCO的面積;
(2)若點(diǎn)P從點(diǎn)C以2個(gè)單位長度/秒的速度沿CO方向移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)O以每秒1單位長度的速度沿OA方向移動(dòng),設(shè)移動(dòng)的時(shí)間為t秒(0<t<7),四邊形OPBA與△OQB的面積分別記為S四邊形OPBA,S△OQB。
①用含t的式子表示
②是否存在一段時(shí)間,使 < S△OQB,若存在,求出t的取值范圍,若不存在,試說明理由。

查看答案和解析>>

同步練習(xí)冊答案