【題目】如圖,函數(shù)y= (x>0)圖象上一點P的橫坐標(biāo)是4,過點P作直線l交x軸于點A,交y軸負(fù)半軸于點B,且OA=OB.
(1)求直線l的函數(shù)解析式;
(2)過點P作直線l的垂線l1 , 交函數(shù)y= (x>0)圖象于點C,求△OPC的面積.
【答案】
(1)解:∵函數(shù)y= (x>0)圖象上一點P的橫坐標(biāo)是4,
∴點P的坐標(biāo)為(4,1),
過P作PE⊥y軸于E,
則PE=4,OE=1,
∵OA=OB,∠AOB=90°,
∴∠EBA=∠OAB=45°=∠EPB,
∴PE=EB=4,
∴OB=3,OA=3,
∴B的坐標(biāo)為(0,﹣3),
設(shè)直線l的解析式為y=ax+c,
把B、P的坐標(biāo)代入得: ,
解得:a=1,c=﹣3,
∴直線l的函數(shù)解析式為y=x﹣3;
(2)解:設(shè)直線PC交y軸于F,
∵l1⊥l,∠OBA=45°,
∴∠EFP=45°,
∴EF=PE=4,
∴OF=4+1=5,
∴F的坐標(biāo)為(0,5),
設(shè)直線l1的解析式為y=ex+f,
把P和F的坐標(biāo)代入得: ,
解得:e=﹣1,f=5,
∴直線l1的解析式為y=﹣x+5,
解方程組 得: 或 ,
即C的坐標(biāo)為(1,4),
∵F(0,5),C(1,4),P(4,1),B(0,﹣3),
∴△OPC的面積S=S△FPB﹣S△FCO﹣S△POB= ×(5+3)×4﹣ ﹣ =
【解析】(1)求出P點的坐標(biāo),過P作PE⊥y軸于E,求出PE=4,OE=1,PE-EB=4,求出B點的坐標(biāo),設(shè)直線l的解析式為y=ax+c,把B、P兩點的坐標(biāo)代入即可;(2)設(shè)直線PC交y軸于F,求出F點的坐標(biāo),求出直線l1的解析式,求出C點的坐標(biāo),根據(jù)各個點的坐標(biāo)求出面積即可。
【考點精析】關(guān)于本題考查的確定一次函數(shù)的表達(dá)式,需要了解確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從1、2、3、4中任取一個數(shù)作為十位上的數(shù)字,再從余下的數(shù)字中任取一個數(shù)作為個位上的數(shù)字,那么組成的兩位數(shù)是6的倍數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點A,B(點A位于點B的左側(cè)),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.
(1)求點A,B,C的坐標(biāo);
(2)設(shè)動點N(﹣2,n),求使MN+BN的值最小時n的值;
(3)P是拋物線上一點,請你探究:是否存在點P,使以P,A,B為頂點的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點的坐標(biāo)為,與軸交于點,且為的中點,雙曲線經(jīng)過、兩點.
(1)求、、的值;
(2)如圖1,點在軸上,若四邊形是平行四邊形,求點的坐標(biāo);
(3)如圖2,在(2)的條件下,動點在雙曲線上,點在軸上,若以、、、為頂點的四邊形為平行四邊形,試求滿足要求的所有點、的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的結(jié)論有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形OABC的頂點B在第一象限,頂點A,C分別在x軸和y軸上,直線l1:x=4與直線l2:y=4相交于點E,以點E為頂點的拋物線K經(jīng)過點B(6,6).
(1)求拋物線K的解析式.
(2)點P是線段OC上一點,點O關(guān)于AP的對稱點為M,
①若點M落在直線l1或l2上時,將拋物線向下或向上平移多少,使其頂點落在AM上;
②若點M落在拋物線上,請直接寫出一個符合題意的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了解學(xué)生對新聞、體育、動畫、娛樂、戲曲類電視節(jié)目的喜愛情況,采用抽樣的方法在七年級選取了一個班的同學(xué),通過問卷調(diào)查,收集數(shù)據(jù)、整理數(shù)據(jù),制作了如下兩個整統(tǒng)計圖,請根據(jù)下面兩個不完整的統(tǒng)計圖分析數(shù)據(jù),回答以下問題:
(1)七年級的這個班共有學(xué)生_____人,圖中______,______,在扇形統(tǒng)計圖中,“體育”類電視節(jié)目對應(yīng)的圓心角為:______.
(2)補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1750名學(xué)生中大約有多少人喜歡“娛樂”類電視節(jié)目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)求證:∠ABE=∠ACD;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com