【題目】如圖,由6個(gè)小正方形組成的網(wǎng)格中,陰影部分是涂黑2個(gè)小正方形所形成的圖案.

1)如果將一粒米隨機(jī)地拋在這個(gè)網(wǎng)格上,那么米粒落在陰影部分的概率是______

2)現(xiàn)將網(wǎng)格內(nèi)空白的小正方形()中任取2個(gè)涂黑,得到新圖案.請(qǐng)用列表或畫樹狀圖的方法求新圖案是軸對(duì)稱圖形的概率.

【答案】1;(2.

【解析】

(1)直接利用概率公式計(jì)算可得;(2)列表得出所有等可能結(jié)果,從中找到新圖案是軸對(duì)稱圖形的結(jié)果數(shù),利用概率公式計(jì)算可得.

:1)∵正方形網(wǎng)格被等分成6等份,其中陰影部分面積占其中的2份,

∴米粒落在陰影部分的概率是

(2)列表如下:

A

B

C

D

A

(B,A)

(C,A)

(D,A)

B

(A,B)

(C,B)

(D,B)

C

(A,C)

(B,C)

(D,C)

D

(A,D)

(B,D)

(C,D)

由表可知,共有12種等可能結(jié)果,其中是軸對(duì)稱圖形的有4種,

故新圖案是軸對(duì)稱圖形的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱軸為的拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)坐標(biāo)為設(shè)拋物線的頂點(diǎn)為

求拋物線的解析式及頂點(diǎn)坐標(biāo);

軸上的一點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo)及的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+c的頂點(diǎn)為C0),與x軸交于AB兩點(diǎn),且A(﹣1,0).

1)求拋物線的解析式;

2)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以每秒v個(gè)單位的速度向y軸負(fù)方向勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接PQ交射線BC于點(diǎn)D,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q停止運(yùn)動(dòng),以點(diǎn)P為圓心,PB為半徑的圓與射線BC交于點(diǎn)E

BE的長(zhǎng);當(dāng)t1時(shí),求DE的長(zhǎng);

若在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,線段DE的長(zhǎng)始終是一個(gè)定值,求v的值及DE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)A3,0),點(diǎn)B(﹣10),與y軸負(fù)半軸交于點(diǎn)C,連接BC、AC

1)求拋物線的解析式;

2)在拋物線上是否存在點(diǎn)P,使得以A、B、C、P為頂點(diǎn)的四邊形的面積等于ABC的面積的倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)如圖2,直線BC與拋物線的對(duì)稱軸交于點(diǎn)K,將直線AC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α°,直線AC在旋轉(zhuǎn)過(guò)程中的對(duì)應(yīng)直線AC與拋物線的另一個(gè)交點(diǎn)為M.求在旋轉(zhuǎn)過(guò)程中MCK為等腰三角形時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,C是⊙O上的一點(diǎn)(不與點(diǎn)A,B重合),過(guò)點(diǎn)CAB的垂線交⊙O于點(diǎn)D,垂足為E點(diǎn).

1)如圖1,當(dāng)AE=4,BE=2時(shí),求CD的長(zhǎng)度;

2)如圖2,連接AC,BD,點(diǎn)MBD的中點(diǎn).求證:MEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸正半軸于點(diǎn),直線經(jīng)過(guò)拋物線的頂點(diǎn).已知該拋物線的對(duì)稱軸為直線,交軸于點(diǎn)

1)求的值.

2是第一象限內(nèi)拋物線上的一點(diǎn),且在對(duì)稱軸的右側(cè),連接.設(shè)點(diǎn)的橫坐標(biāo)為;

的面積為,用含的式子表示;

②記.求關(guān)于的函數(shù)表達(dá)式及的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,如果點(diǎn)到直線的距離與它到軸、軸的距離都相等,那么稱點(diǎn)為直線的“穩(wěn)定點(diǎn)”.

1)到軸、軸的距離相等的點(diǎn)一定在直線__________________上;

2)在下圖中作出直線,并求出該直線所有“穩(wěn)定點(diǎn)”的坐標(biāo);

(備用圖)

3)當(dāng)時(shí),直線的“穩(wěn)定點(diǎn)”的坐標(biāo)為__________________

4)當(dāng)時(shí),直線的所有“穩(wěn)定點(diǎn)”的橫坐標(biāo)之間存在何種數(shù)量關(guān)系,請(qǐng)畫圖直接說(shuō)明,無(wú)需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,“春節(jié)期間”,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為x(千克),在甲園所需總費(fèi)用為y(元),在乙園所需總費(fèi)用為y(元),y、yx之間的函數(shù)關(guān)系如圖所示,折線OAB表示yx之間的函數(shù)關(guān)系.

1)甲采摘園的門票是   元,乙采摘園優(yōu)惠前的草莓單價(jià)是每千克  元;

2)當(dāng)x10時(shí),求yx的函數(shù)表達(dá)式;

3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂部A點(diǎn)測(cè)得建筑物CD的頂部C點(diǎn)的俯角∠EAC30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD45°,求建筑物CD的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案