【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費y(元)與用電量x(度)間的函數(shù)關(guān)系式.

1)根據(jù)圖象,階梯電價方案分為三個檔次,填寫下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140



2)小明家某月用電120度,需交電費

3)求第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式;

4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費m元,小剛家某月用電290度,交電費153元,求m的值.

【答案】1140x≤230,x2302543y=0.5x﹣7140x≤230)(40.4

【解析】

解:(1)根據(jù)圖象,填表如下:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140

140x≤230

x230

254

3)設(shè)第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式為:y=ax+c

將(140,63),(230108)代入得:

,解得:

第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式為:y=0.5x﹣7140x≤230)。

4)根據(jù)題意,第三檔每月電費y1(元)與用電量x(度)之間的函數(shù)關(guān)系式為

小剛家某月用電290度,交電費153元,

∴153=0.5×230+290-230)(0.5+m,解得m=0.4。

答:m的值為0.4。

1)利用函數(shù)圖象可以得出,階梯電價方案分為三個檔次,利用橫坐標(biāo)可得出:第二檔,第三檔中x的取值范圍;

2)設(shè)解析式為:y=kx,將(140,63)代入得出:k==0.45。∴y=0.45x

當(dāng)x=120,y=0.45×120=54(元)。

3)設(shè)第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式為:y=ax+c,將(140,63),(230,108)代入得出即可。

4)求出第三檔每月電費y1(元)與用電量x(度)之間的函數(shù)關(guān)系式,將(290153)代入即可求出m的值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,EDC上一點(點E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點D的對應(yīng)點為D′,點F為線段BC上一點,連接EF,以EF所在的直線為折痕折疊紙片,使點C的對應(yīng)點C′落在直線ED′上,若CF=4時,DE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,C是線段AB上一點,分別以ACBC為邊作等邊△DAC和等邊△ECBAEBDCD相交于點F、G,CEBD相交于點H

1)求證:△ACE≌△DCB;

2)求∠AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任意三角形都是自相似圖形,只要順次連接三角形各邊中點,則可將原三角形分割為四個都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個三角形再分別順次連接它的各邊中點所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個小三角形都是全等三角形(為正整數(shù)),設(shè)此時小三角形的面積為.請寫出一個反映,,之間關(guān)系的等式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任意三角形都是自相似圖形,只要順次連接三角形各邊中點,則可將原三角形分割為四個都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個三角形再分別順次連接它的各邊中點所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個小三角形都是全等三角形(為正整數(shù)),設(shè)此時小三角形的面積為.請寫出一個反映,之間關(guān)系的等式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點D、E分別在AB、AC上,BE、CD相交于點O.

1)若BD=CE,試說明:OB=OC.

2)若BC=10,BC邊上的中線AM=12,試求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形ABC,∠A是頂角,且∠A等于∠C的一半,BD△ABC的角平分線,則該圖中共有等腰三角形的個數(shù)是( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小蘭用尺規(guī)作圖作ABCAC上的高BH,作法如下:

①分別以點DE為圓心,大于DE的一半長為半徑作弧兩弧交于F;

②作射線BF,交邊AC于點H

③以B為圓心,BK長為半徑作弧,交直線AC于點DE;

④取一點K使KBAC的兩側(cè);

所以BH就是所求作的高.其中順序正確的作圖步驟是( 。

A.①②③④B.④③①②C.②④③①D.④③②①

查看答案和解析>>

同步練習(xí)冊答案