【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號(hào)是( 。
A.①②③⑤B.①③④C.①②③④D.①②③④⑤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”共享單車已經(jīng)成了很多人出行的主要選擇.
(1)考慮到共享單車市場(chǎng)競(jìng)爭(zhēng)激烈,摩拜公司準(zhǔn)備用不超過60000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,且A型車不超過60輛.已知A型的進(jìn)價(jià)為500元/輛,B型車進(jìn)價(jià)為700元/輛,設(shè)購進(jìn)A型車m輛,求出m的取值范圍;
(2)已知A型車每月產(chǎn)生的利潤(rùn)是100元/輛,B型車每月產(chǎn)生的利潤(rùn)是90元/輛,在(1)的條件下,求公司每月的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),是以點(diǎn)(0,3)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:
類比是數(shù)學(xué)中常用的數(shù)學(xué)思想.比如,我們可以類比多位數(shù)的加、減、乘、除的豎式運(yùn)算方法,得到多項(xiàng)式與多項(xiàng)式的加、減、乘、除的運(yùn)算方法.
理解應(yīng)用:
(1)請(qǐng)仿照上面的豎式方法計(jì)算:;
(2)已知兩個(gè)多項(xiàng)式的和為,其中一個(gè)多項(xiàng)式為.請(qǐng)用豎式的方法求出另一個(gè)多項(xiàng)式.
(3)已知一個(gè)長(zhǎng)為,寬為的矩形,將它的長(zhǎng)增加8.寬增加得到一個(gè)新矩形,且矩形的周長(zhǎng)是周長(zhǎng)的3倍(如圖).同時(shí),矩形的面積和另一個(gè)一邊長(zhǎng)為的矩形的面積相等,求的值和矩形的另一邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是(-2,2),現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B'、C'分別是B、C的對(duì)應(yīng)點(diǎn).
(1)直接寫出點(diǎn)B'、C'的坐標(biāo):B' ,C' ;并在坐標(biāo)系中畫出平移后的△A'B'C'(不寫畫法);
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P的坐標(biāo)是 ;
(3)若△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°至△A1B1C,畫出△A1B1C.
(4)求△A'B'C'的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,CD平分交AB于點(diǎn)D,將△CDB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△CEF的位置,點(diǎn)F在AC上.
(1)△CDB旋轉(zhuǎn)了________度;
(2)連結(jié)DE,判斷DE與BC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D分別在兩個(gè)半圓上(不與點(diǎn)A、B重合),AD、BD的長(zhǎng)分別是方程x2﹣2x+(m2﹣2m+13)=0的兩個(gè)實(shí)數(shù)根.
(1)若∠ADC=15°,求CD的長(zhǎng);
(2)求證:AC+BC=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)
(2)
(3)(6x-1)2-25=0
(4)
(5)
(6)
(7) ++(﹣1)0﹣2sin45°
(8)6tan230°-cos30°·tan60°-2sin 45°+cos60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的邊長(zhǎng)為2,正方形EFGH的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)E的坐標(biāo)為(3,0),AB與EF均在x軸上.
(1)C,G兩點(diǎn)的坐標(biāo)分別為 , .
(2)將正方形ABCD繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到正方形A'B'C'D',求點(diǎn)C'的坐標(biāo)和FC'的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com