【題目】如圖,在RtABC中,∠C90°,BC6cm,AC8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′處,那么CD_____

【答案】3cm

【解析】

利用勾股定理列式求出AB,根據(jù)翻折變換的性質可得BCBCCDCD,然后求出AC,設CDx,表示出CD、AD,然后利用勾股定理列方程求解即可.

解:∵∠C90°,BC6cm,AC8cm,

AB10cm

由翻折變換的性質得,BCBC6cm,CDCD

ACABBC1064cm,

CDx,則CDx,AD8x,

RtACD中,由勾股定理得,AC2+CD2AD2,

42+x2=(8x2,

解得x3,

CD3cm

故答案為:3cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次數(shù)學活動課上,小明用18個棱長為1的正方體積木搭成一個幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________

A、按照小明的要求搭幾何體,小亮至少需要__________個正方體積木.

B、按照小明的要求,小亮所搭幾何體的表面積最小為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某海域有、、三艘船正在捕魚作業(yè),船突然出現(xiàn)故障,向兩船發(fā)出緊急求救信號,此時船位于船的北偏西方向,距海里的海域,船位于船的北偏東方向,同時又位于船的北偏東方向.

(1)的度數(shù);

船以每小時海里的速度前去救援,問多長時間能到出事地點.(結果精確到小時).(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)ykx+4的圖象經(jīng)過點(﹣3,﹣2).

1)求這個一次函數(shù)的表達式;

2)畫出此一次函數(shù)的圖象,并求它的截距;

3)判斷點(3,5)是否在此函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB30cm,BC35cm,∠B60°,有一動點EAB2cm/s的速度運動,動點FBC4cm/s的速度運動,若E、F同時分別從AB出發(fā).

1)試問出發(fā)幾秒后,BEF為等邊三角形?

2)填空:出發(fā)   秒后,BEF為直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點HA、H、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE//OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.

(1)求A、B兩點的坐標?

(2)若點D為AB中點,求OE的長?

(3)如圖2,若點P(x,-2x+6)為直線AB在x軸下方的一點,點E是y軸的正半軸上一動點,以E為直角頂點作等腰直角△PEF,使點F在第一象限,且F點的橫、縱坐標始終相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,等腰直角△ABOO點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCDC點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是( 。

A. y=﹣2x+1 B. y=﹣x+2 C. y=﹣3x﹣2 D. y=﹣x+2

查看答案和解析>>

同步練習冊答案