【題目】如圖,四邊形ABCD中,∠ADC=∠ABC=90°,與∠ADC、∠ABC相鄰的兩外角平分線交于點(diǎn)E,若∠A=50°,則∠E的度數(shù)為( )

A. 60°B. 50°C. 40°D. 30°

【答案】C

【解析】

運(yùn)用四邊形的內(nèi)角和等于360°,可求∠DCB的度數(shù),再利用角平分線的性質(zhì)及三角形的外角性質(zhì)可求∠E的度數(shù).

解:如圖,連接EC并延長(zhǎng),

∵∠ADC=ABC=90°,∠A=50°,
∴∠DCB=360°-90°-90°-50°=130°,
∵∠ADC、∠ABC相鄰的兩外角平分線交于點(diǎn)E
∴∠CDE=CBE=45°,

∵∠1=CDE+DEC,∠2=CBE+BEC

即∠DCB=CDE+CBE+BED=130°,
∴∠BED=130°-45°-45°=40°
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩塊三角尺AOBCOD的直角頂點(diǎn)O重合在一起,若∠AOD=4BOC,OE為∠BOC的平分線,則∠DOE的度數(shù)為( 。

A. 36° B. 45° C. 60° D. 72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,甲地到乙地的路程為450千米,一輛大貨車(chē)從甲地前往乙地運(yùn)送物資,行駛1小時(shí)在途中某地出現(xiàn)故障,立即通知技術(shù)人員乘小汽車(chē)從甲地趕來(lái)維修(通知時(shí)間忽略不計(jì)),小汽車(chē)到達(dá)該地后經(jīng)過(guò)半小時(shí)修好大貨年后以原速原路返甲地,小汽車(chē)在返程途中當(dāng)走到一半路程時(shí)發(fā)現(xiàn)有重要物品落在大貨車(chē)上,于是立即掉頭以原速追趕大貨車(chē),追上大貨車(chē)取下物品(取物品時(shí)間忽略不計(jì))后以原速原路返回甲地,大貨車(chē)修好后以原速前往乙地,如圖是兩車(chē)距甲地的路程y(千米)與大貨車(chē)所用時(shí)間x(小時(shí))之間的函數(shù)圖象,則當(dāng)小汽車(chē)第二次追上大貨車(chē)時(shí),大貨車(chē)距離乙地_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點(diǎn)A2,1).

(1)分別求出這兩個(gè)函數(shù)的解析式;

(2)當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于0;

(3)若一次函數(shù)與反比例函數(shù)另一交點(diǎn)為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于一次函數(shù)的值;

(4)試判斷點(diǎn)P(﹣1,5)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)P′是否在一次函數(shù)y=kx+m的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知點(diǎn)A2,2),B4,0).若在坐標(biāo)軸上取點(diǎn)C,使ABC為等腰三角形,則滿(mǎn)足條件的點(diǎn)C的個(gè)數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過(guò)DDE⊥ACE,DF⊥ABBA的延長(zhǎng)線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠C=90°,AB=10,BC=8,AC=6.點(diǎn)I為△ABC三條角平分線的交點(diǎn),則點(diǎn)I到邊AB的距離為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開(kāi)展了社團(tuán)活動(dòng),分別設(shè)置了體育類(lèi)、藝術(shù)類(lèi)、文學(xué)類(lèi)及其它類(lèi)社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛(ài)哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖, 請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:

1)此次共調(diào)查了 人;

2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角為 度;

3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)若該校有 1500 名學(xué)生,請(qǐng)估計(jì)喜歡體育類(lèi)社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠BAC=120°ADBCD,且AB+BD=DC,則∠C的度數(shù)是(  )

A. 20°B. 30°C. 45°D. 60°

查看答案和解析>>

同步練習(xí)冊(cè)答案