【題目】名聞遐邇的采花毛尖明前茶,成本每廳400元,某茶場今年春天試營銷,每周的銷售量y(斤)是銷售單價x(元/斤)的一次函數(shù),且滿足如下關(guān)系:
x(元/斤) | 450 | 500 | 600 |
y(斤) | 350 | 300 | 200 |
(1)請根據(jù)表中的數(shù)據(jù)求出y與x之間的函數(shù)關(guān)系式;
(2)若銷售每斤茶葉獲利不能超過40%,該茶場每周獲利不少于30000元,試確定銷售單價x的取值范圍.
【答案】(1)y=﹣x+800;(2)500≤x≤560.
【解析】
(1)利用待定系數(shù)法求解可得依次函數(shù)解析式;
(2)根據(jù)“總利潤=每斤的利潤×周銷售量”可得函數(shù)解析式,再利用二次函數(shù)的性質(zhì)結(jié)合x的取值范圍可得答案;
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,
根據(jù)題意,得: ,
解得:,
則y=﹣x+800;
(2)w=(x﹣400)(﹣x+500)
=﹣x2+1200x﹣320000,
令w=30000得:
30000=﹣x2+1200x﹣320000,
解得:x=500或x=700,
∵a=﹣1<0,
∴500≤x≤700時w不小于30000,
∵x﹣400≤400×40%,
∴x≤560,
∴500≤x≤560.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB∥CD,AD與BC相交于點K,E是線段AD上一動點,
(1)若BK=KC,求的值;
(2)聯(lián)結(jié)BE,若BE平分∠ABC,則當(dāng)AE=AD時,猜想線段AB、BC、CD三者之間有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論并予以證明;
(3)試探究:當(dāng)BE平分∠ABC,且AE=AD(n>2)時,線段AB、BC,CD三者之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C在上,CD⊥OA,垂足為點D,當(dāng)△OCD的面積最大時,圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點D,交AC邊于點F,作DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長為4,求EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求該拋物線的解析式.
(2)一動點P在(1)中拋物線上滑動且滿足S△ABP=10,求此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某同學(xué)在大樓AD的觀光電梯中的E點測得大樓BC樓底C點的俯角為45°,此時該同學(xué)距地面高度AE為20米,電梯再上升5米到達D點,此時測得大樓BC樓頂B點的仰角為37°,求大樓的高度BC.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結(jié)果保留整數(shù))?
(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長、寬都為4m,高為3m的房間的正中央的天花板上懸掛著一只白熾燈泡,為了集中光線,加上了燈罩(如圖所示).已知燈罩深A(yù)N=8cm,燈泡離地面2m,為了使光線恰好照在墻角D、E處,燈罩的直徑BC應(yīng)為多少?(結(jié)果保留兩位小數(shù),≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,約成書于四、五世紀.現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分數(shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”
譯文:“用一根繩子去量一根長木,繩子還剩余4.5尺,將繩子對折再量長木,長木還剩余1尺,問長木長多少尺?”
請解答上述問題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com