【題目】某電腦公司開發(fā)出一種軟件,從研發(fā)到年初上市后,經(jīng)歷了從虧損到盈利的過程,如圖中的圖象是拋物線的一段,它刻畫了該軟件上市以來累積利潤(rùn)S(萬(wàn)元)與銷售時(shí)間t(月)之間的函數(shù)關(guān)系(即前t個(gè)月的利潤(rùn)總和S與t之間的函數(shù)關(guān)系),根據(jù)圖象提供的信息,解答下列問題:
(1)該種軟件上市第幾個(gè)月后開始盈利?
(2)求累積利潤(rùn)S(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)表達(dá)式;
(3)截止到幾月末,公司累積利潤(rùn)達(dá)到30萬(wàn)元?
(4)求公司第6個(gè)月末所累積的利潤(rùn).
【答案】
(1)解:由圖象可得,
該種軟件上市第4個(gè)月后開始盈利
(2)解:設(shè)S=a(t﹣2)2﹣2,
∵函數(shù)圖象過點(diǎn)(0,0),
∴0=a(0﹣2)2﹣2,得a= ,
∴累積利潤(rùn)S(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)表達(dá)式是:S= (t﹣2)2﹣2
(3)解:當(dāng)S=30時(shí),
30= (t﹣2)2﹣2,
解得,t1=10,t2=﹣6(舍去),
即截止到10月末,公司累積利潤(rùn)達(dá)到30萬(wàn)元
(4)解:當(dāng)t=6時(shí),
S= (6﹣2)2﹣2=6,
即公司第6個(gè)月末所累積的利潤(rùn)是6萬(wàn)元
【解析】(1)根據(jù)函數(shù)圖象可以直接解答本題;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得累積利潤(rùn)S(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)表達(dá)式;(3)將S=30代入(2)中的函數(shù)解析式即可解答本題;(4)將t=6代入(2)中的函數(shù)解析式即可解答本題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘巡邏艇航行至海面B處時(shí),得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營(yíng)救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(4)問:若拋物線頂點(diǎn)為D,點(diǎn)Q為直線AC上一動(dòng)點(diǎn),當(dāng)△DOQ的周長(zhǎng)最小時(shí),求點(diǎn)Q的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式(組)
(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在數(shù)軸上表示出來.
(Ⅱ)解不等式組
請(qǐng)結(jié)合題意填空,完成本題的解答.
解不等式①,得 ;
解不等式②,得 ;
把不等式①和②的解集在數(shù)軸上表示出來:
原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線與直線.
【1】(1)求兩直線與軸交點(diǎn)A,B的坐標(biāo);
【2】(2)求兩直線交點(diǎn)C的坐標(biāo);
【3】(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過⊙O外一點(diǎn)P引⊙O的兩條切線PA、PB,切點(diǎn)分別是A、B,OP交⊙O于點(diǎn)C,點(diǎn)D是 上不與點(diǎn)A、點(diǎn)C重合的一個(gè)動(dòng)點(diǎn),連接AD、CD,若∠APB=80°,則∠ADC的度數(shù)是( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
(1)如圖(1),等邊△ABC內(nèi)有一點(diǎn)P到頂點(diǎn)A,B,C的距離分別為3,4,5,則∠APB= .
分析:由于PA,PB不在一個(gè)三角形中,為了解決本題我們可以將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處,此時(shí)△ACP′≌ , 這樣,就可以利用全等三角形知識(shí),將三條線段的長(zhǎng)度轉(zhuǎn)化到一個(gè)三角形中從而求出∠APB的度數(shù).
(2)請(qǐng)你利用第(1)題的解答思想方法,解答下面問題:已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn)且∠EAF=45°,求證:BE2+CF2=EF2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程x2+2x+m﹣2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)該方程的一個(gè)根為1時(shí),求m的值及方程的另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=10,∠ABC=60°.點(diǎn)P從點(diǎn)B沿BC以每秒1個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),射線PF隨點(diǎn)P移動(dòng),始終保持與BC垂直,并交折線BA﹣AC于點(diǎn)E,交直線AD于點(diǎn)F.設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,且點(diǎn)P只在BC上運(yùn)動(dòng).
(1)當(dāng)t為何值時(shí),BP=AF?
(2)設(shè)直線PF掃過菱形ABCD的面積為S,試用t的式子表示S.(寫解題過程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com