【題目】某公司在抗震救災期間承擔40 000頂救災帳篷的生產任務,分為A、B、C、D四種型號,它們的數量百分比和每天單獨生產各種型號帳篷的數量如圖所示:
根據以上信息,下列判斷錯誤的是( )
A.其中的D型帳篷占帳篷總數的10%
B.單獨生產B型帳篷的天數是單獨生產C型帳篷天數的3倍
C.單獨生產A型帳篷與單獨生產D型帳篷的天數相等
D.單獨生產B型帳篷的天數是單獨生產A型帳篷天數的2倍
科目:初中數學 來源: 題型:
【題目】某小組在“用頻率估計概率”的實驗中,統(tǒng)計了某種結果出現的頻率,繪制了如圖所示的折線圖,那么符合這一結果的實驗最有可能的是( )
A.袋子中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中隨機地取出一個球是黃球
B.擲一個質地均勻的正六面體骰子,落地時面朝上的點數是6
C.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
D.擲一枚質地均勻的硬幣,落地時結果是“正面向上”
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數.
請完善解答過程,并在括號內填寫相應的理論依據.
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數.
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數量關系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,如果AB∥CD,∠B=37°,∠D=37°,那么BC與DE平行嗎?完成下面解答過中的填空或填寫理由.
解:∵AB∥CD ( 已知),
∴∠B= ( )
∵∠B=∠D=37°(已知)
∴ =∠D (等量代換)
∴BC∥DE ( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成填空.
你能比較 和 的大小嗎?
為了解決這個問題,先把問題一般化,比較 和 ( ,且 為整數)的大小.然后從分析 ,, 的簡單情形入手,從中發(fā)現規(guī)律,經過歸納、猜想得出結論.
(1)通過計算(可用計算器)比較下列(1)-(7)組兩數的大。海ㄔ跈M線上填上 " "" “或” ")
(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;
(2)歸納第(1)問的結果,可以猜想出 和 的大小關系;
(3)根據以上結論,可以得出 和 的大小關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1為北京城市女生從出生到15歲的平均身高統(tǒng)計圖,圖2是北京城市某女生從出生到12歲的身高統(tǒng)計圖.
請你根據以上信息預測該女生15歲時的身高約為 , 你的預測理由是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA切⊙O于點A,PO交⊙O于點C,連接BC,∠P=∠B.
(1)求∠P的度數;
(2)連接PB,若⊙O的半徑為a,寫出求△PBC面積的思路.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在面積為6的Rt△ABC中,∠C=90°,AC=4,AB=5,BC邊上有一動點P,當點P到AB邊的距離等于PC的長時,那么點P到端點B的距離等于( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com