【題目】根據(jù)圖中①所示的程序,得到了yx的函數(shù)圖象圖中②,若點(diǎn)My軸正半軸上任意一點(diǎn),過點(diǎn)MPQx軸交圖象于點(diǎn)P、Q,連結(jié)OP、OQ,則下列結(jié)論正確的是( 。

A.OPQ的面積為45

B.x0時,

C.x0時,yx的增大而增大

D.POQ可能等于90°

【答案】D

【解析】

根據(jù)題意得到當(dāng)x0,當(dāng)x0時,;設(shè)Pab),Qc,d),求出ab=-3,cd=6,求出△OPQ的面積是4.5x0時,yx的增大而減;利用勾股定理判斷出∠POQ=90°,根據(jù)結(jié)論即可判斷答案.

解:由題意得出:當(dāng)x0,,當(dāng)x0時,

∴故選項(xiàng)B不正確;

設(shè)Pa,b),Qc,d),

ab=﹣3,cd6,

∴△OPQ的面積是(﹣ab+cd4.5

∴故選項(xiàng)A不正確;

∵當(dāng)x0時,,

∴當(dāng)x0時,yx的增大而減小,

∴故選項(xiàng)C不正確;

設(shè)PM=﹣a,則OM=﹣

PO2PM2+OM2=(﹣a2+(﹣2a2+,

QO2MQ2+OM2=(﹣2a2+(﹣24a2+,

當(dāng)PQ2PO2+QO2a2++4a2+5a2+9a2

整理得:a4,

a有解,

∴∠POQ90°可能存在,

∴故選項(xiàng)D正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在改革開放30年紀(jì)念活動中,某校學(xué)生會就同學(xué)們對我國改革開放30年所取得的輝煌成就的了解程度進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖的一部分.

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:

1)本次抽樣調(diào)查的樣本容量是 .調(diào)查中了解很少的學(xué)生占 %;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校共有學(xué)生1300人,那么該校約有多少名學(xué)生很了解我國改革開放30年來取得的輝煌成就.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中任取一個數(shù)作為k的值,則能使分式方程有非負(fù)實(shí)數(shù)解且使二次函數(shù)y=x2+2xk1的圖象與x軸無交點(diǎn)的概率為( 。

A.B.C.D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a),B兩點(diǎn),與x軸交于點(diǎn)C

(1)a,k的值及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Px軸上,且SACPSBOC,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)20小時,他應(yīng)付多少元的上網(wǎng)費(fèi)用?

(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場進(jìn)行試銷據(jù)市場調(diào)查,銷售單價(jià)是100元時,每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本

1當(dāng)銷售單價(jià)為70元時,每天的銷售利潤是多少?

2求出每天的銷售利潤y與銷售單價(jià)x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍

3如果該企業(yè)每天的總成本不超過7000元,那么銷售單價(jià)為多少元時,每天的銷售利潤最大?最大利潤是多少?每天的總成本=每件的成本×每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線yax24amx+3am2a、m為參數(shù),且a0,m0)與x軸交于AB兩點(diǎn)(AB的左邊),與y軸交于點(diǎn)C

1)求點(diǎn)B的坐標(biāo)(結(jié)果可以含參數(shù)m);

2)連接CACB,若C03m),求tanACB的值;

3)如圖②,在(2)的條件下,拋物線的對稱軸為直線lx2,點(diǎn)P是拋物線上的一個動點(diǎn),F是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P,使△POF成為以點(diǎn)P為直角頂點(diǎn)的的等腰直角三角形.若存在,求出所有符合條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB的坐標(biāo)分別為(1,4)(4,4),拋物線yax+m2+n的頂點(diǎn)在線段AB上,與x軸交于C,D兩點(diǎn)(CD的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案