【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結(jié)果保留根號).

【答案】(1)60(2)(60﹣20

【解析】

試題分析:(1)根據(jù)題意得:BD∥AE,從而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得兩建筑物底部之間水平距離BD的長度為60米;

(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,根據(jù)AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的長.

試題解析:(1)根據(jù)題意得:BD∥AE,

∴∠ADB=∠EAD=45°,

∵∠ABD=90°,

∴∠BAD=∠ADB=45°,

∴BD=AB=60,

∴兩建筑物底部之間水平距離BD的長度為60米;

(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,

∴AF=BD=DF=60,

在Rt△AFC中,∠FAC=30°,

∴CF=AFtan∠FAC=60×=20,

又∵FD=60,

∴CD=60﹣20,

∴建筑物CD的高度為(60﹣20)米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】﹣21÷﹣7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若三角形三邊長為整數(shù),周長為11,且有一邊長為4,則此三角形中最長的邊是( 。
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,完成下列推理過程.

已知:DEAOE,BOAOCFBEDO.

證明:CFDO.

證明:∵DEAO,BOAO(已知)

∴∠DEA=∠BOA=90°(   )

DEBO(  )

∴∠EDODOF(   )

又∵∠CFBEDO(   )

∴∠DOFCFB(   )

CFDO(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算3x3-2x3的結(jié)果( )

A. 1 B. x3 C. x6 D. 5x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寫一個與直角三角形有關的定理________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組為了解本校學生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學生最喜愛哪一類節(jié)目 (被調(diào)查的學生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:

(1)求本次調(diào)查的學生人數(shù);

(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)若該中學有2000名學生,請估計該校喜愛電視劇節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式b2x3)+bx3)=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把分別標有數(shù)字2,3,45的四個小球放入A袋,把分別標有數(shù)字, 的三個小球放入B袋,所有小球的形狀、大小、質(zhì)地均相同,A、B兩個袋子不透明.

1)如果從A袋中摸出的小球上的數(shù)字為3,再從B袋中摸出一個小球,兩個小球上的數(shù)字互為倒數(shù)的概率是 ;

(2)小明分別從A,B兩個袋子中各摸出一個小球,請用樹狀圖或列表法列出所有可能出現(xiàn)的結(jié)果,并求這兩個小球上的數(shù)字互為倒數(shù)的概率.

查看答案和解析>>

同步練習冊答案