【題目】在等邊三角形ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

【答案】C

【解析】

由旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)易證∠BAE=∠ABC,,即可得AE∥BC,①正確;證明△BDE是等邊三角形,可得 DE=BD=4,所以△AED的周長=AE+AD+DE=AC+BD=9,可得③④正確根據(jù)已知條件無法證明②正確.

∵△ABC為等邊三角形,∴∠ABC=∠C=60°,AC=BC=5.

∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,

∴∠BAE=∠C=60°,AE=CD.

∴∠BAE=∠ABC,

∴AE∥BC,所以①正確;

∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,

∴∠DBE=60°,BD=BE=4.

∴△BDE為等邊三角形,所以③正確.

∠BDC=∠BAC+∠ABD>60°,∠ADE+∠BDC=180°-∠BDE=120°,

∴∠ADE<∠BDC,∴②一定不正確;

∵AE=CD,DE=BD=4,

∴△ADE的周長=AD+AE+DE=AD+CD+DB=AC+BD=5+4=9,所以④正確.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點(diǎn)B落在點(diǎn)E處,AEDC于點(diǎn)F,AF=25cm,則AD的長為(  )

A. 16cm B. 20cm C. 24cm D. 28cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是線段上除外任意一點(diǎn),分別以為邊在線段的同旁作等邊和等邊,連接,連接,連接.

1)求證:

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)操作:如圖,在已知內(nèi)角度數(shù)的三個(gè)三角形中,請用直尺從某一頂點(diǎn)畫一條線段,把原三角形分割成兩個(gè)等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù)

2)拓展,ABC中,AB=AC,∠A=45°,請把ABC分割成三個(gè)等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù).

3)思考在如圖所示的三角形中∠A=30°.點(diǎn)P和點(diǎn)Q分別是邊ACBC上的兩個(gè)動(dòng)點(diǎn).分別連接BPPQABC分割成三個(gè)三角形.ABPBPQ,PQC若分割成的這三個(gè)三角形都是等腰三角形,求∠C的度數(shù)所有可能值直接寫出答案即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2在x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則B2的坐標(biāo)為_____;點(diǎn)B2016的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,四邊形中,,點(diǎn)分別在邊上,且,求證:.

2)如圖2,四邊形中,,點(diǎn)在邊上,連接,平分于點(diǎn),,連接.

①找出圖中與相等的線段,并加以證明;

②求的度數(shù)(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣3,4),B(﹣4,1),C(﹣11

1)在圖中作出ABC關(guān)于x軸的軸對稱圖形ABC;

2)直接寫出A,B關(guān)于y軸的對稱點(diǎn)A,B的坐標(biāo);

3)求ABC關(guān)于y軸的軸對稱圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn),點(diǎn),且、滿足.

1)求,的值;

2)以為邊作,點(diǎn)在直線的右側(cè)且,求點(diǎn)的坐標(biāo);

3)若(2)的點(diǎn)在第四象限(如圖2),交于點(diǎn),軸交于點(diǎn),連接,過點(diǎn)軸于點(diǎn).

①求證;

②直接寫出點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知,的角平分線上一點(diǎn),連接,;如圖(2),已知,的角平分線上兩點(diǎn),連接,,,;如圖(3),已知,的角平分線上三點(diǎn),連接,,,,,;……,依此規(guī)律,第6個(gè)圖形中有全等三角形的對數(shù)是(

A.21B.11C.6D.42

查看答案和解析>>

同步練習(xí)冊答案