【題目】有四張背面一模一樣的卡片,卡片正面分別寫(xiě)著一個(gè)函數(shù)關(guān)系式,分別是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0),將卡片順序打亂后,隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是(
A.
B.
C.
D.1

【答案】C
【解析】解:函數(shù)y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣ (x<0),是y隨x的增大而增大,
所以隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是
故選C.
利用正比例函數(shù)、二次函數(shù)以及反比例函數(shù)的性質(zhì)可判斷函數(shù)y=2x,y=x2﹣3(x>0),y=﹣ (x<0),是y隨x的增大而增大,然后根據(jù)概率公式可求出取出的卡片上的函數(shù)是y隨x的增大而增大的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別是、

如果將向上平移1個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,得到,直接寫(xiě)出、的坐標(biāo),并求的面積;

求出線段AB中的平移過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年在中央房子是用來(lái)住的,不是用來(lái)炒的精神作用下,房子價(jià)格持續(xù)下跌.玲玲家買(mǎi)了一套新房準(zhǔn)備裝修,若甲、乙兩個(gè)裝飾公司合作,6周完成共需裝修費(fèi)為5.2萬(wàn)元;若甲公司單獨(dú)做4周后,剩下的由乙公司來(lái)做,還需9周才能完成,共需裝修費(fèi)為4.8萬(wàn)元.玲玲的爸爸媽媽商量后決定只選一個(gè)公司單獨(dú)完成.

(1)如果從節(jié)約時(shí)間的角度考慮應(yīng)選哪家公司?

(2)如果從節(jié)約開(kāi)支的角度考慮應(yīng)選哪家公司?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某地,人們發(fā)現(xiàn)某種蟋蟀1min,所叫次數(shù)x與當(dāng)?shù)販囟萒之間的關(guān)系或?yàn)門(mén)=ax+b,下面是蟋蟀所叫次數(shù)與溫度變化情況對(duì)照表:

蟋蟀叫的次數(shù)(x)

84

98

119

溫度(℃)T

15

17

20

①根據(jù)表中的數(shù)據(jù)確定a、b的值.

②如果蟋蟀1min叫63次,那么該地當(dāng)時(shí)的溫度約為多少攝氏度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了監(jiān)控一不規(guī)則多邊形藝術(shù)走廊內(nèi)的活動(dòng)情況,現(xiàn)已在A,B兩處各安裝了一個(gè)監(jiān)控探頭(走廊內(nèi)所用探頭的觀測(cè)區(qū)域?yàn)閳A心角最大可取到180°的扇形),圖中的陰影部分是A處監(jiān)控探頭觀測(cè)到的區(qū)域.要使整個(gè)藝術(shù)走廊都能被監(jiān)控到,還需再安裝一個(gè)監(jiān)控探頭,則安裝的位置是( )

A.E處
B.F處
C.G處
D.H處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)居民節(jié)約用電,電力公司規(guī)定如下電費(fèi)計(jì)算方法:每月用電不超過(guò)100度,按每度0.6元計(jì)費(fèi);每月用電超過(guò)100度,超過(guò)部分按每度1元計(jì)費(fèi).

(1)若某用戶某年1月交電費(fèi)88元,那么該用戶1月份用電多少度?

(2)若某用戶某年2月份平均每度電費(fèi)0.75元,那么該用戶2月份用電多少度?應(yīng)交電費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,∠BAC的平分線ADBC于點(diǎn)D,DE垂直平分AC,垂足為點(diǎn)E,BAD=29°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某條道路上通行車(chē)輛限速為60千米/時(shí),在離道路50米的點(diǎn)P處建一個(gè)監(jiān)測(cè)點(diǎn),道路AB段為檢測(cè)區(qū)(如圖).在△ABP中,已知∠PAB=30°,∠PBA=45°,一輛轎車(chē)通過(guò)AB段的時(shí)間8.1秒,請(qǐng)判斷該車(chē)是否超速?(參考數(shù)據(jù): ≈1.41, ≈1.73,60千米/時(shí)= 米/秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿AH折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.折痕與邊BC交于點(diǎn) H,已知AD=8,HC:HB=3:5.

(1)求證:△HCP∽△PDA;
(2)探究AB與HB之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)連結(jié)BP,動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;說(shuō)明理由;若不變,求出線段EF的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案