【題目】如圖1,在△ABC中,AC=BC,∠ACB=90°,CE與AB相交于點(diǎn)D,且BE⊥CE,AF⊥CE,垂足分別為點(diǎn)E、F.
(1)若AF=5,BE=2,求EF的長(zhǎng).
(2)如圖2,取AB中點(diǎn)G,連接FC、EC,請(qǐng)判斷△GEF的形狀,并說(shuō)明理由.
【答案】(1)EF=3;(2)△GEF為等腰直角三角形;理由見(jiàn)解析.
【解析】
(1)證得∠ACF=∠CBE,由AAS證得△ACF≌△CBE得出CF=BE=2,AF=CE=5,即可得出結(jié)果;
(2)連接CG,證得CG⊥AB,∠BCG=∠ACB=45°,則∠CBG=45°,推出∠GCB=∠CBG=45°,得出CG=BG,易證∠FAD=∠EBG,由△ACF≌△CBE得出CF=BE,∠CAF=∠BCE,證出∠FAD=∠GCD,∠EBG=∠FCG,由SAS證得△CFG≌△BEG得出FG=EG,∠CGF=∠EGB,由∠CGF+∠FGD=90°,得出∠FGD+∠EGB=90°,即∠FGE=90°,即可得出結(jié)論.
(1)∵BE⊥CE,
∴∠BEC=90°,
∵∠ACB=90°,
∴∠BEC=∠ACB,
∴∠ACF+∠BCE=∠BCE+∠CBE=90°,
∴∠ACF=∠CBE,
∵AF⊥CE,
∴∠AFC=90°,
在△ACF和△CBE中,
∵∠ACF=∠CBE,∠AFC=∠BEC,AC=BC,
∴△ACF≌△CBE(AAS),
∴CF=BE=2,AF=CE=5,
∵EF=CE﹣CF,
∴EF=5﹣2=3;
(2)△GEF為等腰直角三角形;理由如下:
連接CG,如圖2所示:
∵AC=BC,AG=BG,
∴CG⊥AB,∠BCG=∠ACB=×90°=45°,
∴∠CBG=90°﹣45°=45°,
∴∠GCB=∠CBG=45°,
∴CG=BG,
在△ADF和△BDE中,∵∠AFD=∠BED,
∴∠FAD=∠EBG,
由(1)證可知:△ACF≌△CBE,
∴CF=BE,∠CAF=∠BCE,
∵∠CAF+∠FAD=∠GCD+∠BCE=45°,
∴∠FAD=∠GCD,
∴∠EBG=∠FCG,
在△CFG與△BEG中,
∵CG=BG,∠FCG=∠EBG,CF=BE,
∴△CFG≌△BEG(SAS),
∴FG=EG,∠CGF=∠EGB,
∵∠CGF+∠FGD=90°,
∴∠FGD+∠EGB=90°,即∠FGE=90°,
∴△FGE是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長(zhǎng)線(xiàn)上,DE=DA.
(1)求證:∠BAD=∠EDC;
(2)作出點(diǎn)E關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)M,連接DM、AM,猜想DM與AM的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知排球場(chǎng)的長(zhǎng)度OD為18 m,位于球場(chǎng)中線(xiàn)處球網(wǎng)的高度AB為2.4 m,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.6 m的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為6 m時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系
(1) 當(dāng)球上升的最大高度為3.4 m時(shí),對(duì)方距離球網(wǎng)0.4 m的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1 m,問(wèn)這次她是否可以攔網(wǎng)成功?請(qǐng)通過(guò)計(jì)算說(shuō)明
(2) 若隊(duì)員發(fā)球既要過(guò)球網(wǎng),又不出邊界,問(wèn)排球飛行的最大高度h的取值范圍是多少?(排球壓線(xiàn)屬于沒(méi)出界)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,的平分線(xiàn)與的垂直平分線(xiàn)交于點(diǎn),將沿(在上,在上)折疊,點(diǎn)與點(diǎn)恰好重合,則為______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點(diǎn)P在線(xiàn)段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),他們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由
(2)判斷此時(shí)線(xiàn)段PC和線(xiàn)段PQ的關(guān)系,并說(shuō)明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)經(jīng)過(guò)點(diǎn)A,且BD⊥l于的D,CE⊥l于的E.
(1)求證:BD+CE=DE;
(2)當(dāng)變換到如圖②所示的位置時(shí),試探究BD、CE、DE的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠DCB與外角∠ABE的平分線(xiàn)相交于點(diǎn)F.
(1)若BF∥CD,∠ABC=80°,求∠DCB的度數(shù);
(2)已知四邊形ABCD中,∠A=105,∠D=125,求∠F的度數(shù);
(3)猜想∠F、∠A、∠D之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的盒子里裝有30個(gè)除顏色外其它均相同的球,其中紅球有m個(gè),白球有3m個(gè),其它均為黃球.現(xiàn)小李從盒子里隨機(jī)摸出一個(gè)球,若是紅球,則小李獲勝;小李把摸出的球放回盒子里搖勻,由小馬隨機(jī)摸出一個(gè)球,若為黃球,則小馬獲勝.
(1)當(dāng)m=4時(shí),求小李摸到紅球的概率是多少?
(2)當(dāng)m為何值時(shí),游戲?qū)﹄p方是公平的?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com