【題目】已知:如圖,四邊形ABCD中,順次連結(jié)各邊中點E、F、G、H得到的四邊形EFGH叫做四邊形ABCD的中點四邊形.
(1)四邊形EFGH的形狀是______,證明你的結(jié)論;
(2)請你探究不同四邊形的中點四邊形的形狀:
①當(dāng)四邊形ABCD變?yōu)槠叫兴倪呅螘r,它的中點四邊形是______;
②當(dāng)四邊形ABCD變?yōu)榫匦螘r,它的中點四邊形是______;
③當(dāng)四邊形ABCD變?yōu)榱庑螘r,它的中點四邊形是______;
④當(dāng)四邊形ABCD變?yōu)檎叫螘r,它的中點四邊形是______;
(3)根據(jù)以上觀察探究,請你總結(jié)中點四邊形的形狀是由原四邊形的什么性質(zhì)決定的?
【答案】(1)四邊形EFGH是平行四邊形.見解析;(2)①平行四邊形;②菱形;③矩形;④正方形.
【解析】
(1)連接BD,利用三角形中位線定理推出所得四邊形對邊平行且相等,故為平行四邊形;
(2)應(yīng)用三角形中位線定理“三角形的中位線等于第三邊的一半”,根據(jù)平行四邊形的判定,菱形的判定,矩形的判定,正方形的判定,求解即可;
(3)由以上法則可知,中點四邊形的形狀是由原四邊形的對角線的大小關(guān)系和位置關(guān)系決定的.
(1)四邊形EFGH是平行四邊形,證明如下:
如圖1,連接BD,
∵E、H分別是AB、AD的中點,
∴EH是△ABD的中位線,
∴EH=BD,EH∥BD.
同理得FG=BD,FG∥BD.
∴EH=FG,EH∥FG,
∴四邊形EFGH是平行四邊形,
故答案為:平行四邊形;
(2)①同理得:當(dāng)四邊形ABCD變?yōu)槠叫兴倪呅螘r,它的中點四邊形是:平行四邊形;
②如圖2,連接AC、BD,
∵四邊形ABCD是矩形,
∴AC=BD,
∵EF=AC,EH=BD,
∴EF=EH,
∴四邊形EFGH是菱形;
③∵四邊形EFGH是菱形,
∴AC⊥BD,
∴∠FEH=90°,
∴四邊形ABCD是矩形;
④∵四邊形ABCD是正方形,
∴AC=BD,AC⊥BD,
∴四邊形EFGH是正方形.
(3)由以上法則可知,中點四邊形的形狀是由原四邊形的對角線的大小關(guān)系和位置關(guān)系決定的.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個長為2x、寬為2y的長方形,沿圖中虛線用剪刀剪成四個完全相同的小長方形,然后按圖2所示拼成一個正方形.
(1)你認(rèn)為圖2中的陰影部分的正方形的邊長等于
(2)試用兩種不同的方法求圖2中陰影部分的面積.
方法1: 方法2:
(3)根據(jù)圖2你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(x+y)2,(x-y)2,4xy.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
若x+y=4,xy=3,則(x-y)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時,y>0,其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
①拋物線與x軸的一個交點為(3,0);②函數(shù)y=ax2+bx+c的最大值為6;③拋物線的對稱軸是直線;④在對稱軸左側(cè),y隨x增大而增大.從上表可知,以上說法中正確的是____________.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),現(xiàn)把一條長為2 018個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計)的一端固定在點A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3).
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)畫出△A1B1C1沿x軸向右平移4個單位長度后得到的△A2B2C2;
(3)如果AC上有一點M(a,b)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點M2的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知A(2,2)、B(4,0),若在x軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小亮從保安中心圖書館出發(fā),沿相同的線路跑向保安體育場,小明先跑一點路程后,小亮開始出發(fā),當(dāng)小亮超過小明150米時,小亮停在此地等候小明,兩人相遇后,一起以小明原來的速度跑向?qū)毎搀w育場,如圖,反映了兩人所跑路程y(米)與所用時間x(秒)之間的關(guān)系,請根據(jù)題意解答下列問題:
(1)問題中的自變量是________,因變量是_________;
(2) 小明共跑了________米,小明的速度為________米/秒;
(3) 圖中a=________米,小亮在途中等候小明的時間是________秒;
(4)小亮從A跑到B這段的速度為________米/秒;
(5)求出b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com