精英家教網 > 初中數學 > 題目詳情

【題目】青少年“心理健康”問題已經引起了社會的關注,某中學對全校850名學生進行了一次“心理健康”知識測試,并從中抽取了50名學生的成績(得分取正整數,滿分為100分)作為樣本,列出下面的頻數分布表(單位:分)

成績

50.5x60.5

60.5x70.5

70.5x80.5

80.5x90.5

90.5x100.5

頻數

2

8

10

16

14

1)組距是   ,組數是   

2)成績在60.5x80.5范圍的頻數是   

3)畫出頻數分布直方圖.

4)若成績在80分以上(不含80分)為優(yōu)秀,試估計該校成績優(yōu)秀的有多少人?

【答案】(1)1052183)見解析(4510

【解析】

1)由頻數分布表根據組距和組數的定義可得;

2)將第23組頻數相加可得;

3)根據頻數分布表中組距和頻數作圖即可得;

4)總人數乘以樣本中后兩組頻數之和所占比例.

解:(1)由頻數分布表知組距是10、組數為5,

故答案為:105;

2)成績在60.5x80.5范圍的頻數是8+1018

故答案為:18;

3)頻數分布直方圖如下:

4)估計該校成績優(yōu)秀的有850×510人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分別是邊AC,AB上的高,BD,CE相交于H,求∠BHC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過點分別作軸、軸的平行線,交直線、兩點,若反比例函數的圖象與有公共點,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,MBC邊上的一點,ECD邊的中點,AE平分∠DAM

1)求證:AMAD+MC;

2)若AD4,求AM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O直徑,D為⊙O上一點,AT平分∠BAD交⊙O于點T,過T作AD的垂線交AD的延長線于點C.

(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2, ,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探索:小明和小亮在研究一個數學問題:已知ABCD,AB和CD都不經過點P,探索P與A,C的數量關系.

發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):APC=A+C;

小明是這樣證明的:過點P作PQAB

∴∠APQ=A(

PQAB,ABCD.

PQCD(

∴∠CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

小亮是這樣證明的:過點作PQABCD.

∴∠APQ=A,CPQ=C

∴∠APQ+CPQ=A+C

APC=A+C

請在上面證明過程的過程的橫線上,填寫依據;兩人的證明過程中,完全正確的是

應用:

在圖2中,若A=120°,C=140°,則P的度數為 ;

在圖3中,若A=30°C=70°,則P的度數為

拓展:

在圖4中,探索P與A,C的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,,垂足為G,若,則AE的邊長為  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,點F、E分別在邊ACAB上,連接DE、DF,且∠AFD+B180°.

1)求證:BDFD;

2)當AF+FDAE時,求證:∠AFD2AED

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的兩點,且BF=ED,求證:AE∥CF.

查看答案和解析>>

同步練習冊答案