【題目】如圖,在四邊形中,,,.分別以點(diǎn),為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn),作射線交于點(diǎn),交于點(diǎn).若點(diǎn)是的中點(diǎn),的周長(zhǎng)為8,則的長(zhǎng)為( )
A.2B.3C.4D.5
【答案】A
【解析】
根據(jù)平行線的性質(zhì)可得∠FAC=∠BCA,∠DAB+∠ABC=180°,可得∠DAB=∠ADC,利用ASA可證明△AOF≌△COB,可得AF=BC=3,即可證明四邊形ABCD是等腰梯形,可得AB=CD,根據(jù)作圖可知點(diǎn)E在線段AC的垂直平分線上,由點(diǎn)O為AC中點(diǎn)可得BE是AC的垂直平分線,可得AF=FC,AB=BC,即可求出FC=CD=BC=3,根據(jù)△CDF的周長(zhǎng)求出DF的長(zhǎng)即可.
∵AD//BC,
∴∠FAC=∠ACB,∠DAB+∠ABC=180°,
∵,
∴∠DAB=∠ADC,
∴四邊形ABCD是等腰梯形,
∴AB=CD,
∵點(diǎn)O為AC中點(diǎn),
∴OA=OC,
在△AOF和△COB中,,
∴△AOF≌△COB,
∴AF=BC=3,
∵以點(diǎn),為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn),
∴點(diǎn)E在線段AC的垂直平分線上,
∵點(diǎn)O是AC中點(diǎn),交于點(diǎn),
∴BE是AC的垂直平分線,
∴AF=FC,AB=BC,
∴FC=CD=BC=3,
∵△CDF的周長(zhǎng)是8,
∴DF=8-CF-CD=2,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā)(點(diǎn)P不與點(diǎn)A、B重合,點(diǎn)Q不與點(diǎn)B、C重合),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,則當(dāng)t為何值時(shí),△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A,B兩點(diǎn),
其中A(-1,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的表達(dá)式及點(diǎn)B坐標(biāo);
(2)點(diǎn)E是線段BC上的任意一點(diǎn)(點(diǎn)E與B、C不重合),過(guò)點(diǎn)E作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G.
①設(shè)點(diǎn)E的橫坐標(biāo)為m,用含有m的代數(shù)式表示線段EF的長(zhǎng);
②線段EF長(zhǎng)的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中.
(1)作出△ABC關(guān)于軸對(duì)稱的,并寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo): ( 。( 。( 。
(2)直接寫(xiě)出△ABC的面積為 ;
(3)在軸上畫(huà)點(diǎn)P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在⊙O的直徑AB的延長(zhǎng)線上,PC為⊙O的切線,點(diǎn)C為切點(diǎn),連接AC,過(guò)點(diǎn)A作PC的垂線,點(diǎn)D為垂足,AD交⊙O于點(diǎn)E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過(guò)點(diǎn)F作AD的平行線交PC于點(diǎn)G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線y=(x>0)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為1,∠AOB=∠OBA=45°,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四邊形中,,,點(diǎn),分別在射線,上,滿足.
(1)如圖1,若點(diǎn),分別在線段,上,求證:;
(2)如圖2,若點(diǎn),分別在線段延長(zhǎng)線與延長(zhǎng)線上,請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時(shí)后,兩車相距多少千米?
(5)行駛多長(zhǎng)時(shí)間后,A、B兩車相遇?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com