【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于點(diǎn)E,∠E=30°,交AB于點(diǎn)D,連接AE,則SADC:S△ADE的比值為( )
A.
B.
C.
D.1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列問題:
(1)已知一元二次方程ax2+bx+c=0(a≠0)有兩根x1 , x2(b2﹣4ac≥0).用求根公式寫出x1 , x2 , 并證明x1+x2=﹣ ,x1x 2=
(2)若一元二次方程x2+x﹣1=0的兩根為m,n,運(yùn)用(1)中的結(jié)論,求 + 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察以下等式:
第1個(gè)等式:++×=1,
第2個(gè)等式:++×=1,
第3個(gè)等式:++×=1,
第4個(gè)等式:++×=1,
第5個(gè)等式:++×=1,
……
按照以上規(guī)律,解決下列問題:
(1)寫出第6個(gè)等式:_____;
(2)寫出你猜想的第n個(gè)等式:_____(用含n的等式表示),并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;并寫出點(diǎn)A2、B2、C2坐標(biāo);
(3)請畫出△ABC繞O順時(shí)針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點(diǎn)A3、B3、C3坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AE⊥AB,且AE=AB,BC⊥CD且BC=CD,若點(diǎn)E、B、D到直線AC的距離分別為6,3,4,則圖中實(shí)現(xiàn)所圍成的圖像面積是( )
A. 50 B. 44 C. 38 D. 32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DBE都是等腰直角三角形,點(diǎn)D在AC上,其中∠ABC=∠DBE=90°.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=5,AD:DC=2:3時(shí),求DE的大。
(3)當(dāng)點(diǎn)D在線段AC上運(yùn)動(dòng)時(shí)(D不與A重合),請寫出一個(gè)反映DA2,DC2,DB2之間關(guān)系的等式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價(jià)和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價(jià).
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(jià)(元/千克) | 15 | 25 | 30 |
千克數(shù) | 40 | 40 | 20 |
(1)求該什錦糖的單價(jià).
(2)為了使什錦糖的單價(jià)每千克至少降低2元,商家計(jì)劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,AD=4,點(diǎn)P在邊DC上,且△PAB是直角三角形,請?jiān)趫D中標(biāo)出符合題意的點(diǎn)P,并直接寫出PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com