【題目】如圖,點P是∠AOB外的一點,點Q是點P關(guān)于OA的對稱點,點R是點P關(guān)于OB的對稱點,直線QR分別交∠AOB兩邊OA,OB于點M,N,連結(jié)PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度數(shù).
【答案】17°
【解析】
先根據(jù)點P于點Q關(guān)于直線OA對稱可知OM是線段PQ的垂直平分線,故PM=MQ,∠PMQ=2∠PMO,根據(jù)三角形內(nèi)角和定理求出∠PQM的度數(shù),同理可得出PN=RN,故可得出∠PNR=2∠PNO,再由平角的定義得出∠PNQ的度數(shù),由三角形外角的性質(zhì)即可得出結(jié)論.
解:∵點Q和點P關(guān)于OA的對稱,
點R和點P關(guān)于OB的對稱
∴直線OA、OB分別是PQ、PR的中垂線,
∴MP=MQ,NP=NR,
∴∠PMO=∠QMO,∠PNO=∠RNO,
∵∠PMO=3 3°,∠PNO=70°
∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°
∴∠PMQ=66°,∠PNR=140°
∴∠MQP=57°,
∴∠PQN=123°,∠PNQ=40°,
∴∠QPN=17°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)15﹣(﹣8)+(﹣20)﹣12
(2)2×(﹣3)2﹣4×(﹣3)+15
(3)(﹣)2+|﹣2|3﹣
(4)﹣20+(﹣2)2﹣32+|﹣10|
(5)﹣22×2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)5m-7n-8p+5n-9m-p;
(2)x4x5(-x)7+5(x4)4-(x7)3÷x5.
【答案】(1)-4m-2n-9p;(2)3x16
【解析】
(1)先移項,再合并同類項;
(2)原式利用冪的乘方、同底數(shù)冪的乘法和除法法則計算,再合并即可得到結(jié)果.
(1)5m-7n-8p+5n-9m-p=5m-9m-7n+5n-8p-p=-4m-2n-9p;
(2)x4x5(-x)7+5(x4)4-(x7)3÷x5=- x4x5x7+5x16-x21÷x5=- x16 +5x16-x16=3x16
【點睛】
此題考查了冪的乘方、同底數(shù)冪的乘法、除法法則計算以及合并同類項,熟練掌握整式運算的有關(guān)法則是解答此題的關(guān)鍵.
【題型】解答題
【結(jié)束】
21
【題目】解方程:(x-2)-(4x-1)=4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;
(2)已知2x-y-4=0,求9x27y÷81y的值.
【答案】(1)27;(2)81.
【解析】
(1)運用整式的加減運算順序先去括號,再合并同類項,根據(jù)乘法的分配律將5a+5b變形為5(a+b),最后代入求值即可;
(2)根據(jù)冪的乘方,可得同底數(shù)冪的乘法,根據(jù)同底數(shù)冪的乘法,可得答案.
(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab,
當(dāng)a+b=5,ab=-2時,
原式=5×5-(-2)=27;
(2)9x27y÷81y=32x33y÷34y=32x-y,
由2x-y-4=0,得2x-y=4,
故原式=34=81.
【點睛】
本題考查了冪的乘方,同底數(shù)冪的乘法,整式的混合運算和求值的應(yīng)用,用了整體代入思想.
【題型】解答題
【結(jié)束】
23
【題目】根據(jù)要求完成下列題目:
(1)圖中有_____塊小正方體;
(2)請在下面方格紙中分別畫出它的主視圖、左視圖和俯視圖;
(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個小正方體,最多要n個小正方體,則m+n的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓錐紙帽的側(cè)面展開圖是一個圓心角為120°,弧長為6π(cm)的扇形紙片,則圓錐形紙帽的側(cè)面積為( )
A.9π cm2
B.18π cm2
C.27π cm2
D.36π cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在湖邊高出水面50 m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°.則飛艇離開湖面的高度( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y= x+b與雙曲線y= 的一個交點為(2,5),直線與y軸交于點A.
(1)求m的值及點A的坐標(biāo);
(2)若點P在雙曲線y= 的圖象上,且S△POA=10,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬安縣開發(fā)區(qū)某電子電路板廠到井岡山大學(xué)從應(yīng)屆畢業(yè)生中招聘公司職員,對應(yīng)聘者的專業(yè)知識、英語水平、參加社會實踐與社團活動等三項進(jìn)行測試或成果認(rèn)定,三項的得分滿分都為100分,三項的分?jǐn)?shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.
項目 | 專業(yè)知識 | 英語水平 | 參加社會實踐與 社團活動等 |
甲 | 85 | 85 | 90 |
乙 | 85 | 85 | 70 |
丙 | 80 | 90 | 70 |
丁 | 90 | 90 | 50 |
(1)分別算出4位應(yīng)聘者的總分;
(2)表中四人“專業(yè)知識”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請你求出四人“參加社會實踐與社團活動等”的平均分及方差;
(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對大學(xué)生應(yīng)聘者有何建議?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com