【題目】如圖,已知直線:和直線:,過點(diǎn)作軸,交直線于點(diǎn)A,若點(diǎn)P是x軸上的一個(gè)動點(diǎn),過點(diǎn)P作平行于y軸的直線,分別與、交于點(diǎn)C、D,連接AD、BC.
直接寫出線段______;
當(dāng)P的坐標(biāo)是時(shí),求直線BC的解析式;
若的面積與的面積相等,求點(diǎn)P的坐標(biāo).
【答案】(1) ;(2) y=-2x+4; (3) (1,0)或(-1,0).
【解析】
軸且點(diǎn)A在直線上,點(diǎn)B的坐標(biāo)為所以求出點(diǎn)A的坐標(biāo)即可求AB;
因軸于點(diǎn)P,點(diǎn),點(diǎn)C在直線上,即可以求出點(diǎn)C的坐標(biāo),即可用待定系數(shù)法求直線BC的解析式;
因的面積與的面積相等,即時(shí)兩三角形的面積相等,設(shè)點(diǎn),則有,即可求出點(diǎn)P的坐標(biāo).
解:軸且點(diǎn)A在直線上,
將代入,得,
即;
點(diǎn)軸,
將代入,得,故點(diǎn)C的坐標(biāo)為,
設(shè)直線BC的解析式為:,將點(diǎn)C,點(diǎn)B代入得:
,解得,
故直線BC的解析式為:;
由題意得,當(dāng)時(shí),,
設(shè)點(diǎn)P的坐標(biāo)為,
,解得或.
點(diǎn)P的坐標(biāo)為或.
故答案為:(1) ;(2) y=-2x+4;(3) (1,0)或(-1,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),公路上有A、B、C三個(gè)車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖(2)所示.
(1)當(dāng)汽車在A、B兩站之間勻速行駛時(shí),求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求出v2的值;
(3)若汽車在某一段路程內(nèi)剛好用50分鐘行駛了90千米,求這段路程開始時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)如今,通過“微信運(yùn)動“發(fā)布自己每天行走的步數(shù),已成為一種時(shí)尚,“健身達(dá)人”小華為了了解他的微信朋友圈里大家的“建步走運(yùn)動“情況,隨機(jī)抽取了20名好友一天行走的步數(shù),記錄如下:
5640 | 6430 | 6320 | 6798 | 7325 | 8430 | 8215 | 7453 | 7446 | 6754 |
7638 | 6834 | 7325 | 6830 | 8648 | 8753 | 9450 | 9865 | 7290 | 7850 |
對這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
請根據(jù)以上信息解答下列問題:
(1)填空:m= ,n= .
(2)補(bǔ)全頻數(shù)分布直方圖.
(3)根據(jù)以上統(tǒng)計(jì)結(jié)果,第二天小華隨機(jī)查看一名好友行走的步數(shù),試估計(jì)該好友的步數(shù)不低于7500步(含7500步)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動點(diǎn),且AE=CF,當(dāng)BF+CE取得最小值時(shí),∠AFB=( )
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列證明過程補(bǔ)充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD≌△BCE,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,點(diǎn) M 為 DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn) N.
(1)如 圖 1,當(dāng) A、B、E三點(diǎn)在同一直線上時(shí),
①求證:△MEN≌△MDA;
②判斷 AC與 CN數(shù)量關(guān)系為_______,并說明理由.
(2)將圖 1 中△BCE繞 點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中△CAN 能否為等腰直角三角形?若能,直接寫出旋轉(zhuǎn)角度;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示成兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.
如:
因此,4,12,20這三個(gè)數(shù)都是神秘?cái)?shù).
(1)28和2012這兩個(gè)數(shù)是不是神秘?cái)?shù)?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是4的倍數(shù),請說明理由.
(3)兩個(gè)連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘?cái)?shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
(1)求證:△BCE≌△ACD;
(2)求證:FC=HC
(3)求證:FH∥BD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com