【題目】如圖,矩形ABCD中,AB=1,AD=2,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對(duì)稱(chēng)軸上,則AE的長(zhǎng)為_____.
【答案】1或
【解析】分析:分兩種情況:①過(guò)A′作MN∥CD交AD于M,交BC于N,則直線MN是矩形ABCD 的對(duì)稱(chēng)軸,得出AM=BN=AD=1,由勾股定理得到A′N(xiāo)=0,求得A′M=1,再由勾股定理解得A′E即可;
②過(guò)A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,由三角函數(shù)求出AE=A′E=A′B×tan30°;即可得出結(jié)果.
詳解:
分兩種情況:
①如圖1,過(guò)A′作MN∥CD交AD于M,交BC于N,
則直線MN是矩形ABCD 的對(duì)稱(chēng)軸,
∴AM=BN=AD=1,
∵△ABE沿BE折疊得到△A′BE,
∴A′E=AE,A′B=AB=1,
∴A′N(xiāo)=,即A′與N重合,
∴A′M=1,
∴A′E2=EM2+A′M2,
∴A′E2=(1-A′E)2+12,
解得:A′E=1,
∴AE=1;
②如圖2,過(guò)A′作PQ∥AD交AB于P,交CD于Q,
則直線PQ是矩形ABCD 的對(duì)稱(chēng)軸,
∴PQ⊥AB,AP=PB,AD∥PQ∥BC,
∴A′B=2PB,
∴∠PA′B=30°,
∴∠A′BC=30°,
∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×;
綜上所述:AE的長(zhǎng)為1或.
故答案是:1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1為放置在水平桌面l上的臺(tái)燈,底座的高AB為5cm,長(zhǎng)度均為20cm的連桿BC、CD與AB始終在同一平面上.
(1)轉(zhuǎn)動(dòng)連桿BC,CD,使∠BCD成平角,∠ABC=150°,如圖2,求連桿端點(diǎn)D離桌面l的高度DE.
(2)將(1)中的連桿CD再繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),經(jīng)試驗(yàn)后發(fā)現(xiàn),如圖3,當(dāng)∠BCD=150°時(shí)臺(tái)燈光線最佳.求此時(shí)連桿端點(diǎn)D離桌面l的高度比原來(lái)降低了多少厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過(guò)BC延長(zhǎng)線上一點(diǎn)G,作GD⊥AO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,M是GE的中點(diǎn),連接CF,CM.
(1)判斷CM與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥,12周后,記錄了兩組患者的生理指標(biāo)和的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者;
同時(shí)記錄了服藥患者在4周、8周、12周后的指標(biāo)z的改善情況,并繪制成條形統(tǒng)計(jì)圖.
根據(jù)以上信息,回答下列問(wèn)題:
(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)的值大于1.7的概率;
(2)設(shè)這100名患者中服藥者指標(biāo)數(shù)據(jù)的方差為,未服藥者指標(biāo)數(shù)據(jù)的方差為,則 ;(填“>”、“=”或“<” )
(3)對(duì)于指標(biāo)z的改善情況,下列推斷合理的是 .
①服藥4周后,超過(guò)一半的患者指標(biāo)z沒(méi)有改善,說(shuō)明此藥對(duì)指標(biāo)z沒(méi)有太大作用;
②在服藥的12周內(nèi),隨著服藥時(shí)間的增長(zhǎng),對(duì)指標(biāo)z的改善效果越來(lái)越明顯.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著新冠肺炎的爆發(fā),市場(chǎng)對(duì)口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來(lái),--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬(wàn)個(gè))與天數(shù)且為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對(duì)口供應(yīng)市場(chǎng)對(duì)口罩的需求量<(百萬(wàn)個(gè))與天數(shù)呈拋物線型,第天市場(chǎng)口罩缺口(需求量與供應(yīng)量差)就達(dá)到(百萬(wàn)個(gè)),之后若干天,市場(chǎng)口罩需求量不斷上升,在第天需求量達(dá)到最高峰(百萬(wàn)個(gè)).
求出與的函數(shù)解析式;
當(dāng)市場(chǎng)供應(yīng)量不小于需求量時(shí),市民買(mǎi)口罩才無(wú)需提前預(yù)約,那么在整個(gè)二月份,市民無(wú)需預(yù)約即可購(gòu)買(mǎi)口罩的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=30°,連接CD,BE交于點(diǎn)F.= ;∠BFD= ;
(2)如圖2,在矩形ABCD和△DEF中,AB=AD,∠EDF=90°,∠DEF=60°,連接AF交CE的延長(zhǎng)線于點(diǎn)G.求的值及∠AGC的度數(shù),并說(shuō)明理由.
(3)在(2)的條件下,將△DEF繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),AF,CE所在直線交于點(diǎn)P,若DE=1,AD=,求出當(dāng)點(diǎn)P與點(diǎn)E重合時(shí)AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)學(xué)前夕,某文具店準(zhǔn)備購(gòu)進(jìn)A、B兩種品牌的文具袋進(jìn)行銷(xiāo)售,若購(gòu)進(jìn)A品牌文具袋和B品牌文具袋各5個(gè)共花費(fèi)125元,購(gòu)進(jìn)A品牌文具袋3個(gè)和B品牌文具袋各4個(gè)共花費(fèi)90元.
(1)求購(gòu)進(jìn)A品牌文具袋和B品牌文具袋的單價(jià);
(2)若該文具店購(gòu)進(jìn)了A,B兩種品牌的文具袋共100個(gè),其中A品牌文具袋售價(jià)為12元,B品牌文具袋售價(jià)為23元,設(shè)購(gòu)進(jìn)A品牌文具袋x個(gè),獲得總利潤(rùn)為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②要使銷(xiāo)售文具袋的利潤(rùn)最大,且所獲利潤(rùn)不超過(guò)進(jìn)貨價(jià)格的40%,請(qǐng)你幫該文具店設(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生一分鐘跳繩情況,從這兩個(gè)年級(jí)隨機(jī)抽取名學(xué)生進(jìn)行測(cè)試,并對(duì)測(cè)試成績(jī)(一分鐘跳繩次數(shù))進(jìn)行整理、描述和分析,下面給出了部分信息:
七年級(jí)學(xué)生一分鐘跳繩成績(jī)頻數(shù)分布直方圖
七、八年級(jí)學(xué)生一分鐘跳繩成績(jī)分析表
七年級(jí)學(xué)生一分鐘跳繩成績(jī)(數(shù)據(jù)分組:)在這一組的是:
根據(jù)以上信息,回答下列問(wèn)題:
表中 ;
在這次測(cè)試中,七年級(jí)甲同學(xué)的成績(jī)次,八年級(jí)乙同學(xué)的成績(jī),他們的測(cè)試成績(jī),在各自年級(jí)所抽取的名同學(xué)中,排名更靠前的是 (填“甲”或“乙”),理由是 .
該校七年級(jí)共有名學(xué)生,估計(jì)一分鐘跳繩不低于次的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中,沒(méi)有實(shí)數(shù)根的是( 。
A.2x+3=0B.x2﹣1=0C.D.x2+x+1=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com