【題目】已知二次函數(shù)y=ax2+bx+c(a<0)的圖象經(jīng)過(m+1,a),(m,b)兩點.
(1)若m=1,a=-1,求該二次函數(shù)的解析式;
(2)求證:am+b=0;
(3)若該二次函數(shù)的最大值為,當(dāng)x=1時,y≥3a,求a的取值范圍.
【答案】(1)y=-x2+x+1;(2)證明見解析;(3).
【解析】
(2)把m=1,a=-1代入(m+1,a),(m,b)得(2,-1),(1,b),把(2,-1),(1,b)代入函數(shù)解析式,進(jìn)行解方程組即可;
(2)把(m+1,a),(m,b)代入函數(shù)解析式,得到方程組,將方程組進(jìn)行整理即可;
(3)由(2)得的方程組可得:c=b=-am.即可得出拋物線解析式為:y=ax2-amx-am.當(dāng)x=1時,得到不等式:a-am-am≥3a,解得 m≥-1. 利用最值得到方程,整理得:.將c=b=-am代入,解得:==.進(jìn)行解答即可.
解:(1)若m=1,a=-1,則拋物線y=-x2+bx+c過 (2,-1),(1,b) 兩點,
∴
解得
∴這個二次函數(shù)的解析式為y=-x2+x+1.
(2)∵拋物線y=ax2+bx+c經(jīng)過(m+1,a),(m,b)兩點,
∴
①-②,得 2am+a+b=a-b.
整理,得 am+b=0;
(3)由(2)得,b=-am,代入②,得c=b=-am.
∴y=ax2-amx-am.
∵當(dāng)x=1時,y≥3a,
∴a-am-am≥3a,即-2am≥2a,
∵a<0,∴m≥-1.
∵該二次函數(shù)的最大值為,
∴,即.③
將c=b=-am代入③,得,
∴==.
∵m≥-1,
∴≥-3,
∵a<0
∴a≤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在Rt△ABC中,∠ACB=90°,AC=6cm,動點P從點B出發(fā),沿折線B→A→C路線勻速運動到C停止,動點Q從點C出發(fā),沿折線C→B→A路線勻速運動到A停止,如點P、Q同時出發(fā)運動t秒后,如圖(2)是△BPC的面積S1(cm2)與t(秒)的函數(shù)關(guān)系圖象,圖(3)是△AQC的面積S2(cm2)與t(秒)的函數(shù)關(guān)系圖象:
(1)點P運動速度為 cm/秒;Q運動的速度 cm/秒;
(2)連接PQ,當(dāng)t為何值時,PQ∥BC;
(3)如圖(4)當(dāng)運動t(0≤t≤2)秒時,是否存在這樣的時刻,使以PQ為直徑的⊙O與Rt△ABC的一條邊相切,若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們縣是紫菜生產(chǎn)大縣,某景點商戶向游客推銷一種加工好的優(yōu)質(zhì)紫菜,已知每千克成本為20元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),該產(chǎn)品銷售量(千克)與銷售單價(元/千克)的變化而變化有如下關(guān)系式:.設(shè)這種紫菜在這段時間內(nèi)的銷售利潤為(元).
(1)求與的關(guān)系式;
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果物價部門規(guī)定該景區(qū)這種紫菜的銷售單價不得高于28元/千克,該商戶每天能否獲得比150元更大的利潤?如果能請求出最大利潤,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,無人機航拍測量的應(yīng)用越來越廣泛.如圖,無人機從A處觀測得某建筑物頂點O時俯角為30°,繼續(xù)水平前行10米到達(dá)B處,測得俯角為45°,已知無人機的水平飛行高度為45米,則這棟樓的高度是多少米?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點A,B,C,D都在邊長為1的小正方形網(wǎng)格的格點上,過點M(1,-2)的拋物線y=mx2+2mx+n(m>0)可能還經(jīng)過( )
A.點AB.點BC.點CD.點D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月,我國中小學(xué)生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)某班語文老師想從這四大名著中隨機選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸分別交于,兩點.
(1)求拋物線的表達(dá)式;
(2)在第二象限內(nèi)取一點,作垂直軸于點,連結(jié),且,.將沿軸向右平移個單位,當(dāng)點落在拋物線上時,求的值;
(3)在(2)的條件下,當(dāng)點第一次落在拋物線上時記為點,點是拋物線對稱軸上一點.試探究:在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形,若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:實數(shù)x滿足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,對于每一個x,p都取y1,y2中的較大值.若p的最小值是a2﹣1,則a的值是( )
A.0或﹣3B.2或﹣1C.1或2D.2或﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com