【題目】如圖,已知:點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明ABED?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使ABED成立,并給出證明.

供選擇的三個條件(請從其中選擇一個):

AB=ED;

BC=EF;

③∠ACB=DFE.

【答案】

【解析】由上面兩條件不能證明AB//ED.

有兩種添加方法.

第一種:FB=CE,AC=DF添加 AB=ED

證明:因為FB=CE,所以BC=EF,又AC=EF,AB=ED,所以ABCDEF

所以ABC=DEF 所以AB//ED

第二種:FB=CE,AC=DF添加 ACB=DFE

證明:因為FB=CE,所以BC=EF,又ACB=DFE AC=EF,所以ABCDEF

所以ABC=DEF 所以AB//E

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知射線AB與直線CD交于點OOF平分∠BOC,OGOF于點O,AEOF,且∠A30°.

(1)求∠DOF的度數(shù);

(2)試說明OD平分∠AOG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了準備迎新活動,用700元購買了甲、乙兩種小禮品260個,其中購買甲種禮品比乙種禮品少用了100元.

(1)購買乙種禮品花了______元;

(2)如果甲種禮品的單價比乙種禮品的單價高20%,求乙種禮品的單價.(列分式方程解應用題)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CBy,y軸負半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點坐標;

(2)如圖2,D為線段OB上一動點,ADAC,ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù).

(3)如圖3,D點在線段OB上運動時,DMADBCM,BMD、DAO的平分線交于N,D點在運動過程中,N的大小是否變化?若不變,求出其值,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】保障房建設是民心工程,某市從2013年加快保障房建設工程. 現(xiàn)統(tǒng)計該市從2013年到2017年這5年新建保障房情況,繪制成如圖所示的折線統(tǒng)計圖和不完整的條形統(tǒng)計圖.

(1)小穎看了統(tǒng)計圖后說:“該市2016年新建保障房的套數(shù)比2015年少了. 你認為小穎的說法正確嗎?請說明理由;

(2)2016年新建保障房的套數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰直角ABC,C=90°,點D是斜邊AB的中點,EAC上的動點、EDF=90°,DFBC 于點F.

(1) DEAC,DFBC 時,如圖1),我們很容易得出:SDEF+SCEF=SABC.

(2)如圖2,DE AC不垂直,且點E在線段AC上時,(1)中的結論是否成立,如果不成立,請說明理由;如果成立,請證明.

(3)當點E運動到AC延長線上,其他條件不變,請把圖3補充完整,直接寫出 SDEF,SCEF,SABC的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知一個多邊形的內角和是它的外角和的 3 倍,求這個多邊形的邊數(shù).

(2)如圖,點F ABC 的邊 BC 延長線上一點.DFAB,A=30°,F=40°,求∠ACF 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點F,∠AGF=130°,則∠F等于(
A.9.5°
B.19°
C.15°
D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點D為另一塊三角板DMN的直角頂點,DM、DN分別交AB、AC于點EF.則下列四個結論:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四邊形AEDFBC2.其中正確結論是_____(填序號).

查看答案和解析>>

同步練習冊答案