【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

【答案】A
【解析】解:設等腰直角三角形的直角邊為a,正方形邊長為c, 則S2= (a+c)(a﹣c)= a2 c2
∴S2=S1 S3 ,
∴S3=2S1﹣2S2 ,
∴平行四邊形面積=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1
故選A.
設等腰直角三角形的直角邊為a,正方形邊長為c,求出S2(用a、c表示),得出S1 , S2 , S3之間的關系,由此即可解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a,b相交于點O,1=2.

(1)指出∠3的對頂角;

(2)指出∠5的補角;

(3)若∠1與∠4的度數(shù)之比為14,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù) 的圖象如圖所示,則結論: ①兩函數(shù)圖象的交點A的坐標為(2,2);
②當x>2時,y2>y1;
③當x=1時,BC=3;
④當x逐漸增大時,y1隨著x的增大而增大,y2隨著x的增大而減。
其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分類討論,在平面直角坐標系中,已知A(2,3),B(0,2),C(3,0).將三角形ABC的一個頂點平移到坐標原點O處,寫出平移方法和另兩個對應頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補全頻數(shù)分直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一塊斜邊長為12cm,∠B=60°的直角三角板ABC,繞點C沿逆時針方向旋轉(zhuǎn)90°至△A′B′C′的位置,再沿CB向右平移,使點B′剛好落在斜邊AB上,那么此三角板向右平移的距離是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADABC的高線,AD=BC,以AB為底邊作等腰RtABE,連接ED,EC,延長CEADF點,下列結論:①△ADE≌△BCE;CEDE;BD=AF;SBDE=SACE,其中正確的有( 。

A. ①③ B. ①②④ C. ①②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負一場得0分,一隊共踢了30場比賽,負了9場,共得47分,那么這個隊勝了(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,E是CD上一點,DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則SDEF:SEBF:SABF=

查看答案和解析>>

同步練習冊答案