【題目】正方形ABCD,FAB上一點(diǎn),HBC延長線上一點(diǎn),連接FH,FBH沿FH翻折,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在AD,EHCD交于點(diǎn)G連接BGFH于點(diǎn)M,當(dāng)GB平分CGE時(shí),BM=2AE=8,ED=______

【答案】4

【解析】如圖,BBPEHP連接BE,FHN則∠BPG=90°.∵四邊形ABCD是正方形,∴∠BCD=ABC=BAD=90°,AB=BC,∴∠BCD=BPG=90°.GB平分∠CGE,∴∠EGB=CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=CBGBP=BC,AB=BP∵∠BAE=BPE=90°,BE=BE,RtABERtPBEHL),∴∠ABE=PBE,∴∠EBG=EBP+∠GBP=ABC=45°,由折疊得BF=EF,BH=EH,FH垂直平分BE∴△BNM是等腰直角三角形BM=2,BN=NM=2,BE=4AE=8,RtABEAB==12,AD=12DE=128=4故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽假設(shè)拿書時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過程中分別保持勻速媽媽從C處出發(fā)x分鐘時(shí)離C處的距離為y1,小明離C處的距離為y2,如圖②,折線O-D-E-F表示y1x的函數(shù)圖像折線O-G-F表示y2x的函數(shù)圖像

(1)小明的速度為_________m/min,a的值為__________

(2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y

寫出小明媽媽在騎車由C處返回到A處的過程中,yx的函數(shù)表達(dá)式及x的取值范圍;

在圖③中畫出整個(gè)過程中yx的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法,其中正確的個(gè)數(shù)是( 。

①整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù);②絕對(duì)值是它本身的數(shù)只有0;③兩數(shù)之和一定大于每個(gè)加數(shù);④如果兩個(gè)數(shù)積為0,那么至少有一個(gè)因數(shù)為0;⑤0是最小的有理數(shù),;⑥數(shù)軸上表示互為相反數(shù)的點(diǎn)位于原點(diǎn)的兩側(cè);⑦幾個(gè)有理數(shù)相乘,如果負(fù)因數(shù)的個(gè)數(shù)是奇數(shù),那么積為負(fù)數(shù),

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織了熱愛憲法,捍衛(wèi)憲法的知識(shí)競賽,賽后發(fā)現(xiàn)所有學(xué)生的成績(總分100分)均不低于50分,為了解本次競賽的成績分布情況,隨機(jī)抽取若干名學(xué)生的成績作為樣本進(jìn)行整理,并繪制了不完整的統(tǒng)計(jì)圖表,請(qǐng)你根據(jù)統(tǒng)計(jì)圖表解答下列問題.

1)此次抽樣調(diào)查的樣本容量是_________;

2)寫出表中的a=_____,b=______c=________;

3)補(bǔ)全學(xué)生成績分布直方圖;

4)比賽按照分?jǐn)?shù)由高到低共設(shè)置一、二、三等獎(jiǎng),若有25%的參賽學(xué)生能獲得一等獎(jiǎng),則一等獎(jiǎng)的分?jǐn)?shù)線是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AB=2cm,AC=5cm,SABCD=8cm2E點(diǎn)從B點(diǎn)出發(fā),以1cm每秒的速度,在AB延長線上向右運(yùn)動(dòng),同時(shí),點(diǎn)FD點(diǎn)出發(fā),以同樣的速度在CD延長線上向左運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

1)在運(yùn)動(dòng)過程中,四邊形AECF的形狀是____

2t____時(shí),四邊形AECF是矩形;

3)求當(dāng)t等于多少時(shí),四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D

1)求∠CBD的度數(shù);

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使ACB=∠ABD時(shí),直接寫出ABC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案